

Italian Institutions participating in CALET

Florence University

founded: **1321** students: 51,000 PhD programs: 24

Padova University

founded: **1222** students: 70,000 PhD programs: 40

Pisa University

founded: **1343** students: 50,000 PhD programs: 36

IFAC - Florence

founded: 2002 researchers: 81 collaborators: 40

Siena University

founded: **1240** students: 16,000 PhD programs: 23 Institute of Applied Physics (from 2002) former: Microwaves Research Center (1946-2002)

An old medieval question: who built the most beautiful tower?

Florence tower

inelegant **but** straight

真っ直ぐだが洗練されていない

Pisa tower

elegant **but** tilted

雅だが傾いている

Siena tower

elegant and straight

優雅で真っ直ぐ

Padova clock tower

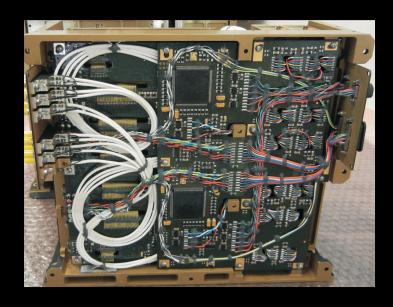
with astronomical clock

天文時計とともに


CALET 10 year anniversary - Tokyo - November 15, 2025

Hardware contribution to CALET

High Voltage Power Supply Component (HVPSC)


- ➤ The primary part of the HV system is the "HV Box" unit, implementing 102 independent high-voltage lines for the PMT and APD photo-detectors of the CALET calorimeter instrument:
 - o 80 HV lines (down to -900 V with 0.1% resolution) for PMTs
 - o 22 HV lines (down to -500 V with 0.1% resolution) for APDs
- + additional electronic boards for control and interface with the MDC unit managing the operation of CALET system.
- > The secondary part comprizes 3 HV modules for the CGBM instrument.
- > Two specimens of the HV Box (flight and engineering model) have been produced, tested and delivered to JAXA

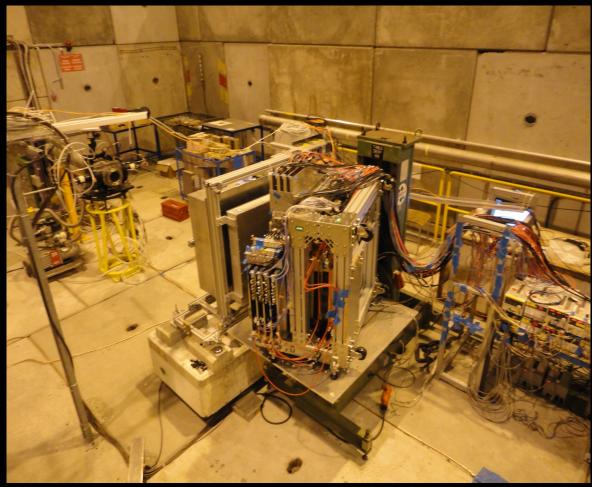
Hardware contribution to CALET

High Voltage Power Supply Component (HVPSC)

One half of the HV Box unit before final assembly. The HV modules are tightly packed behind two closely superposed PCB's containing the digital control electronics.

- ➤ The HV Box is divided into two symmetrical halves; for each half, the single components are replicated for redundancy and identified as "hot", normally powered-on, and "cold", normally kept powered-off and used for substitution of the hot ones in the case of malfunctioning.
- ➤ The HV channels are implemented through DC/DC converter and linear regulator (LR) stages. To comply with the desired performances of the CAL instrument, they have been:
 - o designed and characterized for a linearity accuracy better than 3%
 - noise less than 150 mV (peak-to-peak) over the whole mission (also taking into account aging and environmental effects).

Hardware development for CALET



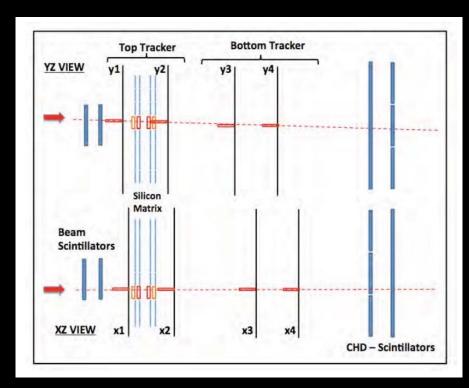
o Study of Light Guides for the light coupling of CHD scintillators to the PMT

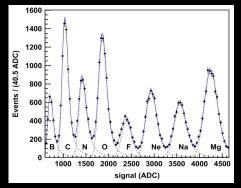
Beam Tests activities with CALET

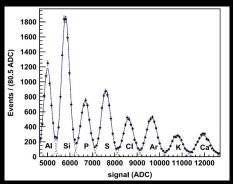
- Beam tests at CERN with beams of fragmented ions with A/Z=2
- upstream of the CALET calorimeter a silicon BEAM TRACKER provides:
 - the direction of the **incident track**
 - the incident ion charge $1 \le Z \le 28$

CALET 10 year anniversary - Tokyo - November 15, 2025

Beam Tests activities with CALET

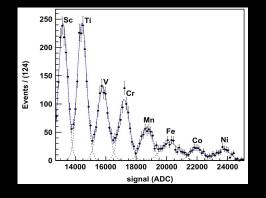


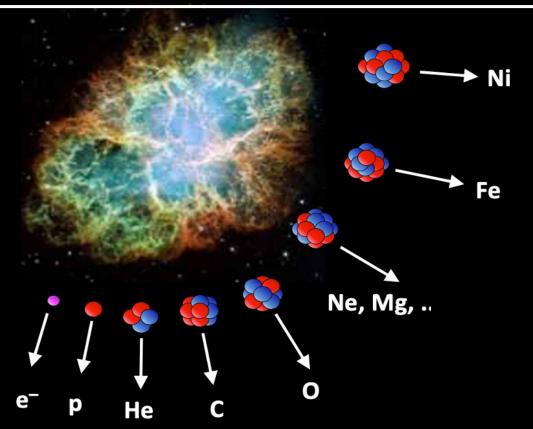

The Silicon Tracker


8 Si strip sensors

4 Si pixel sensors

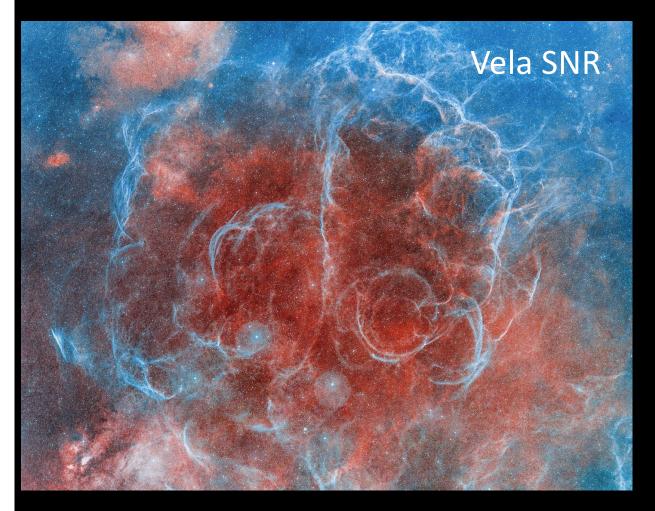
- Each layer consists of 128 "strip-ribbons", each 732 μm wide,
 with 183 μm pitch strips ganged x 4
- pixel sensors are arranged in a 8x8 matrix with square pads of 1.28 cm² sensitive area





charge resolution: 0.2 – 0.25 e

Direct measurements of the fluxes of cosmic-ray elements from proton to nickel


Cosmic rays (electrons, protons, and nuclei) are being measured by CALET on the International Space Station to the highest energies. They carry information on their sources, acceleration and propagation processes. On the right: iron and nickel fluxes recently measured by CALET.

Participation in the CALET data analysis on cosmic nuclei fluxes by:

- University of Siena
- Univ. of Padova
- Univ. of Pisa

Direct measurements of the fluxes of cosmic electrons

Participation in the CALET data analysis on the electron flux and anisotropy studies by:

University of Florence

Summary and Future Prospects

- CALET was successfully launched on Aug. 19th, 2015
- 10 years of excellent performance and remarkable stability of the instrument
- Precision measurents of electrons+positrons and nuclei at energies never reached before
- Detection of UNEXPECTED spectral features. More to come ...

➤ Efficient integration of scientists from all countries into a friendly common effort あらゆる国の科学者を友好的な共同の取り組みに効率的に統合すること

The future: - extension of CALET operations to the end of 2030

- new ideas and opportunities in space research can be profitably pursued together

