JAXA

Measurement of the Dipole Anisotropy of Electron+Positron Cosmic Rays with CALET

Holger Motz¹ and Yosui Akaike^{2,3} for the CALET collaboration

JPS annual meeting Hiroshima, 2025/09/17

¹Waseda University, Faculty of Science and Engineering, Global Center for Science and Engineering ²Waseda University, Waseda Research Institute for Science and Engineering ³Japan Aerospace Exploration Agency, Human Spaceflight Technology Directorate, Space Environment Utilization Center

CALorimetric Electron Telescope

Aug. 2015: launched and installed on the ISS Oct. 2015: beginning of data-taking Stable operation up to now, mission extended until the end of 2030.

geometric acceptance:

 $\sim 0.1 \text{ m}^2 \text{ sr}$

total radiation thickness: 30 X₀ (Fermi-LAT: 8.6X₀)

TASC

CHD

IMC

(Total Absorption

Calorimeter)

(Imaging

Calorimeter)

(CHarge Detector)

 → fully contained showers up to TeV energies, 2% energy resolution

Motivation for Anisotropy Search

- The electron+positron cosmic-ray flux in the TeV energy region is expected to originate from nearby supernova remnants (SNR), the Vela SNR may dominate the spectrum.
- A dipole anisotropy in the measured flux could originate from such a dominating single source and would be a valuable signature to verify cosmic ray acceleration by SNRs.

Analysis Method

- Data sample: 3×10⁵ electron candidate events above 50 GeV energy from 2015/10/13 to 2024/12/31 (3368 days), below 475.5 GeV geometry condition A+B only, all geometry conditions (A-D) above 475.5 GeV
- Events above a given threshold energy are filled into HEALPix maps (NSIDE=64: ~50000 pixels) in galactic coordinates
- Monopole (C₀) and Dipole (C₁) coefficients as well as the dipole vector

direction are calculated with HEALPix

- The dipole amplitude δ is given by: $\delta = 3\sqrt{\frac{C_1}{C_0}}$
- If the dipole is dominating:

$$\delta \approx \frac{\Phi_{max} - \Phi_{min}}{\Phi_{max} + \Phi_{min}}$$

Correction of Non-Uniform Exposure

Simulation of Expected Dipole Amplitude from White Noise

- 5000 simulated event samples equivalent to the real data-set were created
- Randomized event energy distribution based on a double broken power law fit of the spectrum
- Randomized event direction (uniform distribution over the sphere) weighted with the exposure map
- Samples analyzed with the same algorithm as the real data to find the confidence interval for the case of no real anisotropy existing in the cosmic-ray flux.

 Each event's energy is used as threshold energy ordered from high to low energy

- Measured dipole amplitude within 2σ confidence band
- Near upper bound above threshold energies of ~2 TeV

Upper Limit on Dipole Amplitude

• 95% CL limit calculated using the PDF for δ as given in the 2010 Fermi-LAT paper [PRD 82:092003,2010] :

$$\frac{3\sqrt{6}}{\sqrt{\pi}\delta^3}\int_0^{\delta_{meas}} \hat{\delta}^2 e^{-\left(\frac{3\hat{\delta}^2}{2\delta^2}\right)} d\hat{\delta} = 0.05$$

- \rightarrow resolve for δ
- Limit by this method depends only on the measured dipole amplitude, not the expected range from white noise

Comparison with Previous Results

Limits at a few 100 GeV have improved over our results from 2019 [PoS ICRC2019, 112] and are comparable to Fermi-LAT 2010 results

Stricter limits from
Fermi-LAT data are
published in
[PRL118, 091103(2017)]
with analysis using
independent bins

→ a direct comparison is
not possible in this plot.

Binned Analysis Limits

- Use binned analysis to compare with newer results from Fermi-LAT [PRL118,091103(2017)]
- Highest bin for Fermi-LAT from 562 GeV to 2 TeV, but central energy is well below 1 TeV
- For CALET analysis, this bin is cut at 1 TeV, an additional bin ranging from 1 TeV to 5 TeV is added
- Used the limit calculation methods from this Fermi-LAT paper
- Fermi-LAT limits about one order of magnitude stricter, but CALET provides a real TeV-region limit

TeV-range dipole due to gamma-ray events mistaken for electrons?

E > 5 TeV, number of events = 14

green dots: TeV gamma source positions taken from TeVCat catalog:

https://tevcat.org/

Only one electron event is closer than two degree from a TeV gamma-ray source (marked with red circle)

→ events dominating the TeV-region dipole direction and magnitude are not associated with known gamma-ray sources

Conclusions

- From the electron+positron event data taken by CALET until the end of 2024, limits on the dipole amplitude as a function of lower threshold energy, as well as for independent energy bins have been calculated.
- A unique limit on anisotropy in the 1-2 TeV range has been set
- The dipole amplitude above about 2 TeV increases above the expected value from white noise, reaching the boundary of the 2σ confidence band.
- The direction of this TeV-region dipole is approximately towards the Vela SNR, which implies that a strong dipole anisotropy originating from the contribution of Vela to the TeV-region electron flux remains a valid hypothesis.

Acknowledgments: We gratefully acknowledge JAXA's contributions to the development of CALET and to the operations aboard the JEM-EF on the ISS. This work was supported in part by JSPS Grant-in-Aid for Scientific Research (S) No. 26220708, No. 19H05608, and No. 24H00025, JSPS Grant-in-Aid for Scientific Research (B) No. 24K00665, and by the MEXT Supported Program for the Strategic Research Foundation at Private Universities (2011-2015) (No. S1101021) at Waseda University, and Waseda University Grant for Special Research Projects 2025R-032. The CALET effort in Italy is supported by ASI under Agreement No. 2013-018-R.0 and its amendments. The CALET effort in the United States is supported by NASA through Grants No. NNX16AB99G, No. NNX16AC02G, and No. NNH14ZDA001N-APRA-0075.

Additional Slides

TeV-range dipole due to gamma-ray events mistaken for electrons?

diffuse galactic gamma-ray flux from Fermi-LAT and LHAASO (right) compared to CALET electron plotted in the same units → gamma-ray flux at least one order of magnitude lower

Frequentist and Bayesian Limit

formulae copy-pasted from Fermi-LAT (2017) supplemental material

expected white noise:
$$C_N = \frac{4\pi}{N_{pixels}^2} \sum_{i=1}^{N_{pixels}} \frac{n_i}{\mu_i^2}$$

theoretical (limit) dipole \hat{C}_1^{ani} moment magnitude:

measured dipole moment magnitude:

Frequentist (likelihood ratio λ):

$$\begin{array}{l} -2\ln\lambda(\hat{C}_{1}^{ani}) \\ = \chi \text{ difference} \\ \rightarrow 3.841 \text{ for} \end{array} = \begin{cases} 3\left(\ln\frac{\hat{C}_{1}^{ani} + C_{N}}{C_{1}} + \frac{C_{1}}{\hat{C}_{1}^{ani} + C_{N}} - 1\right) \\ 3\left(\ln\frac{\hat{C}_{1}^{ani} + C_{N}}{C_{N}} + \frac{C_{1}}{\hat{C}_{1}^{ani} + C_{N}} - \frac{C_{1}}{C_{N}}\right) \end{cases}$$

if $C_1 - C_N > 0$ otherwise

prevents setting a stricter limit based on the measurement being lower than the expectation by chance

95%CL

Bayesian: resolve for upper limit
$$1-\alpha = \int_{\hat{C}_{1,low}^{ani}}^{\hat{C}_{1,up}^{ani}} P(\hat{C}_1^{ani}|C_1,C_N) d\hat{C}_1^{ani}$$

$$\alpha = 0.05 = 0$$

$$P(C_1|\hat{C}_1^{ani}, C_N) = \frac{3\sqrt{3}}{\sqrt{2\pi}\hat{C}_1} \sqrt{\frac{C_1}{\hat{C}_1}} \exp\left(-\frac{3C_1}{2\hat{C}_1}\right)$$
$$\hat{C}_1 = \hat{C}_1^{ani} + C_N$$