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Introduction
● Context: Study of cosmic-propagation based on the measured nuclei spectra

● Motivation: Suitable propagation conditions needed to use electron/positron 
cosmic rays for studying astrophysical sources and dark matter signatures. 

● Hypothesis: Structures/differences in nuclei spectra caused by propagation

→ Goal: Find propagation conditions explaining the current nuclei spectra 
measurements assuming a common source spectrum for all primary nuclei



  

Model and Calculation Method
● Common source spectrum: power law with index γl below, and γh above the 

break at Rbi with softness sbi , and with an exponential cut-off at Rcut 

● Diffusion coefficient depending on position and with two breaks in rigidity 
dependence: 

● Diffusive re-acceleration with Alven speed va and convection with speed vc 

● Calculations done with DRAGON [D. Gaggero et al., Phys.Rev.Lett. 111(2), 021102 (2013)]
● Modifications: Soft breaks in source spectrum and diffusion coefficient 

function, double exponential spatial dependence of the diffusion coefficient 

D(r , z , D)=D 0max (e(r−r n)/ rs ,1 )max (e( z− zn)/ z s ,1 )( R
4GV )

δl(1+( RRbl )
δ−δl
sl )

sl(1+( RRbh )
δ−δh
sh )

−sh



  

18-Dimensional Parameter Space
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Previous Best-fit Model

γl Rbi sbi γh Rcut wsa

2.030 13.45
GV 0.229 2.345 30.12

TV
0.648 
kpc

D0 rs zs δl Rbl sl

3.066
×1028 
cm2/s

10.70
kpc

4.50
kpc 0.211 8.437

GV 0.053

δ Rbh sh δh va vc

0.514 913.5
GV 0.369 0.002 14.74

m/s
0

m/s

total χ2/ndof:= 230/290

    Reference: PoS ICRC2023 068 



  

Impact of new Helium Data
CALET Helium data 
[Phys. Rev. Lett. 
130, 171002 (2023)] 
shows a steeper 
hardening than in 
the proton spectrum
→ harder spectrum 
in conflict with TeV 
proton data (already 
upper side of errors)
→ challenge to the 
assumption of a 
common injection 
spectrum 
→ search parameter 
space w. convection 
if there is a solution



  

Optimizing DRAGON Parameters
● Model quality parameters extracted from fit of normalization and solar modulation 

parameters to data. Examples:
– Total χ2 of all experimental data

→ not suitable, experiments with many data-points dominate
– Likelihood (p-value of single exp.), neg. log. sum over experiments (Sum-NLL)

→ all experiments have equal weight
– Negative log of p-value for single worst fitting experiment (Max-NLL)

→best to see if model can agree to each experiment, but not smooth function
● Parameter space so far probed by “random” walk, combination of different 

methods used to select next model to calculate. Examples: 
– randomly within a given step size
– by interpolating/extrapolating parameters of already calculated models

● Calculation of full Nickel-proton spallation network very time consuming  
→ to test if Helium-Proton hardening discrepancy can be solved,    

calculating helium-proton (with antiproton) range is sufficient  



  

New Approach
● Try to predict the likelihood as a function of the input parameters to have a 

better chance of finding better parameters in each optimization step.

→ 18 dimensional parameter space → Machine Learning 
● Investigated methods:

– Neural Network (promising but difficult to set up, over-training) 
– Bayesian Optimization (for coarsely exploring parameter space)
– Focus of this talk: Gradient Descent on Ridge Model 



  

Method
● Fit a ridge model (regularized polynomial function)                                        

to the (preprocessed) likelihood (Y) results, parameters                                 
are the (preprocessed) DRAGON input parameters (X)

● Hyper-parameters (polynomial degree, regularization parameter) are determined 
by splitting the existing data in training (90%) and test (10%) samples and 
optimizing for best prediction of the test samples by the model 

(polynomial terms are all combinations of the parameters with combined power of 
the polynomial’s degree: 1329 for 18 parameters and 3rd degree)  

● Determine gradient of function at a start-point (best likelihood or random) and take 
a step in negative gradient direction                                                                       
→ new set of parameters to be calculated by DRAGON

● Using tools from the scikit-learn library  

regularized 

not regularized 

from 
wikipedia



  

Parameter Space

High energy diffusion coefficient 
power law index fixed to 0.0001 
(equivalent to 0) since 
optimization converged to this 
lower boundary

scatter plots of the already 
calculated points with pairs 
of parameters as axes



  

Parameter Space

Take diffusion coefficient 
normalization vs. power 
law index as an example 
to demonstrate data     
pre-processing  



  

Pre-Processing

Step 1:
subtract mean and 
scale to variance
(sklearn.preprocessing.
StandardScaler) 



  

Step 1:
subtract mean and 
scale to variance
(sklearn.preprocessing.
StandardScaler)

→ this allows for 
calculating distances 
between models using 
an Euclidean metric
→ used for weighting of 
points in fitting of the 
ridge model  

Pre-Processing

variance determines 
scale of each parameter 
independent of units

mean



  

Step 2:
subtract position of the 
start point (best point)

Pre-Processing



  

Step 2:
subtract position of the 
start point (best point)

→ the intercept of the 
polynomial function is 
set to zero 
→ likelihood is also 
scaled and shifted
→ the start point 
becomes the origin and 
the function is forced to  
be correct there 

Pre-Processing



  

Step 3:
scale values to fit in the 
range between -1 and 1
(sklearn.preprocessing.
MaxAbsScaler) 

Pre-Processing



  

Step 3:
scale values to fit in the 
range between -1 and 1
(sklearn.preprocessing.
MaxAbsScaler) 

→ fitting procedure 
requires normalized 
data

Pre-Processing



  

Weighting in Ridge Model Fit

No Weights:

All points are considered 
equally in the fitting



  

Distance Weights:

We are most interested in 
the function being correct 
near the start point → 
weight reduced with 
distance from start point

w=(1+ 1
d )

2

Weighting in Ridge Model Fit



  

Exponential Weights:

We are most interested in 
the function being correct 
for points with good 
likelihood (reduce influence 
of outliers with very high 
neg. log. likelihood)

w=e−NLL

Weighting in Ridge Model Fit



  

Gradient Steps
● Gradient is calculated numerically by finite steps in each parameter direction
● Distance Δ to go in direction of negative gradient is calculated by evaluating 

the polynomial function along the gradient axis and finding the minium.
● A pre-set maximum distance Δmax is taken if no minimum found.

● After performing the DRAGON calculation at the new point and obtaining a 
likelihood value, it is added to the point sample and it becomes the start-
point for the next step 

Δ Δmax

start point

new point 
(predicted)

new point 
(predicted)

start point



  

Preliminary Results (Sum-NLL)

step



  

Preliminary Results (Sum-NLL)
Sum-NLL: New, better 
parameter sets were 
found by the gradient 
descent algorithm    
→ works in principle

step



  

Preliminary Results (Max-NLL)

step



  

Preliminary Results (Max-NLL)

Maximum NLL is not a smooth function → possible 
reason why no better parameters were found.
But new points near minimum were used as input for 
the interpolation algorithm to find a new best-fit model. 

step



  

Current Best Fit Model

minimum p-value is 0.04 → 96 %CL exclusion → progress, but need further improvement



  

Conclusions / Outlook
● The ridge model gradient descent algorithm is a first implementation of a 

machine learning algorithm to understand the parameter space of cosmic ray 
propagation and support the numerical calculation with DRAGON.

● The stronger hardening of the Helium spectrum compared to proton is difficult to 
explain with a common injection spectrum, but the found best-fit model suggests 
an explanation based on propagation effects may be possible.   

● Further evaluation and tuning of the algorithm ongoing.
● Next goal: Prediction of likelihood by neural network aiming for better 

performance also with not smooth loss functions (i.e. Max-NLL). 
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Hypothesis: Differences in Nuclei  
Spectra Caused by Propagation

● Observed spectra are power laws but the index changes with 
rigidity at several points: (1) Softening @ O 10 GV, 
(2) Hardening @ O 100 GV – 1 TV, (3) Softening @ O 10 TV

● Indices and break positions different between proton and He 
(and other nuclei, but less significant) 
 

● Possible Explanations:
● Source spectrum different for each nuclei species
● Propagation causes differences in spectral shape   

→ Assumed common source spectrum: power law with index γl below, and γh 
above the break at Rbi with softness sbi , and with an exponential cut-off at Rcut 

(2)(1) (3)

PRL 115, 211101 (2015)



  

Diffusion Coefficient Structure

D(r , z , D)=D0max (e(r−r n)/ rs ,1 )max (e( z− zn)/ z s ,1 )( R
4GV )

δl(1+( RRbl )
δ−δl
sl )

sl(1+( RRbh )
δ−δh
sh )

−sh

● Further spectral changes of the nuclei spectra are modeled by two breaks 
in the rigidity dependence of the diffusion coefficient, softening from δl to δ 
at Rbl with softness sl , then hardening again to δh at Rbh with softness sh

● Diffusion coefficient depends on position – exponential increase with 
galactic radius r, distance from galactic plane z – constant central zones: 
galactic center rn = 2 kpc, galactic disc zn = 0.15 kpc

● Motivation: Sources concentrated in galactic center and disk cause 
magnetic field turbulence, influence decreasing with distance – different 
propagation conditions for nuclei species depending on how far they 
propagate out into the halo and back based on nuclei mass and A/Z



  

Experimental Data Used (Spectra)
● Proton Flux

   0.13 – 0.35 GeV: Voyager APJ 831(1), 18 (2016)

   5 GeV – 1 TeV: AMS-02 PRL 114, 171103 (2015)

   1 – 60 TeV : CALET PRL 129, 101102 (2022)

● Helium Flux
   0.11 – 0.66 GeV: Voyager APJ 831(1), 18 (2016)

   11 GV – 643 GV: AMS-02 PRL 115, 211101 (2015)

   1 TeV – 250 TeV: CALET PRL 130, 171002 (2023)

● Carbon & Oxygen Flux
   10 GeV – 2.2 TeV: CALET PRL 125, 251102 (2020)

Helium

Using data above  
5 GeV/nucleon or 
equivalent rigidity  
– solar modulation 
difficult to model 
below this energy
→ Voyager data for 
lower energy range

AMS-02 CALET
1 TeV

5 GeV

11 GV 643 GV

1 TeV



  

Experimental Data Used (Ratios)
● Antiproton fraction

   5 – 450 GV: AMS-02 PRL 117, 091103 (2016)

●
3He/4He ratio

   5 – 10 GeV: AMS-02 PRL 123, 181102 (2019)

● B/C ratio

   5 GeV – 1.3 TeV: AMS-02 PRL 117, 231102 (2016)

●
7Be/Be ratio

   0.25 – 0.85 GeV: PAMELA Universe 7 (2021) 6, 183

●
10Be/9Be ratio

   0.25 – 0.85 GeV: PAMELA Universe 7 (2021) 6, 183

Universe 7 (2021) 6, 183
Beryllium Radioactive Isotopes as a 
Probe to Measure the Residence Time 
of Cosmic Rays in the Galaxy and Halo 
Thickness: A “Data-Driven” Approach,    
Francesco Nozzoli, Cinzia Cernetti



  

Fitting the Spectra to the Data
● Parameters fitted by minimizing total 

χ2 of all experimental data 
– Normalization correction factors

● Proton 
● Helium 
● Carbon 
● Oxygen 

– Solar modulation potential parameters
● Φ0

● Φ1+   (positive charge)
● Φ1-   (negative charge)
● R0

Charge sign and rigidity dependent 
solar modulation potential: 

Φ=Φ0+Φ1± ( 1+(R/R0)
2

((R /R0)
3) )

based on 
Ilias Cholis, Dan Hooper, Tim Linden  
Phys. Rev. D 93, 043016 (2016)
“A Predictive Analytic Model for the 
Solar Modulation of Cosmic Rays”

norma-
lization

DRAGON output 
based on one set of 
source&propagation 
parameters (model)

Voyager data fitted with 
not modulated spectrum

so
la

r 
m

od
u-

la
tio

n

https://arxiv.org/search/astro-ph?searchtype=author&query=Cholis%2C+I
https://arxiv.org/search/astro-ph?searchtype=author&query=Hooper%2C+D
https://arxiv.org/search/astro-ph?searchtype=author&query=Linden%2C+T
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