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Motivation

e Recent observation of proton flux shows

Proton flux in PRL2022 (red) compared
to other direct and ground measurements
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 We present updated proton flux using data with increased statistics by 21% from PRL2022
and helium flux at 40GeV<E<200TeV newly published in PRL2023.
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Proton event selection

selection

Brief description

1. Event trigger

HE trigger in E>300GeV and LE trigger in E<300GeV.

2. Geometrical acceptance

Track going through the detector from the top to the bottom is selected.

3. Track quality cut

Reliability of Kalman Filter fitting in IMC is checked.

4. Electron rejection

Electron events are rejected using the energy deposit within one Moliere radius
along the track.

5. Off-acceptance cut

Residual events crossing the detector from the sides are rejected.

6. TASC hit consistency

In order to reject the events with mis-reconstructed track, we reject the events
which doesn’t have consistent energy deposit at the top X/Y layer of TASC where
the track is expected to go through from the track reconstruction in IMC.

7. Shower start in IMC

Shower development starting in IMC is required.

8. Charge identification in
CHD and IMC

Charge identification using the energy deposit in CHD and IMC (before shower
development starts) is performed to reject helium events, mainly.

/NIRRT, 2023709 H16H H AW S F IR K4 3




Proton spectrum
(50GeV<E<60TeV)
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LE: same as PRL2019
HE: 1925 days of live time (Oct. 2015 — Apr. 2023)

N(E)

PE) = 50T AE=(E)
®(E): proton flux

N(E): number of events in AE bin (after
background subtraction)

SQ: geometrical acceptance (510cm?sr)
T: livetime

AE': energy bin width

£(E): detection efficiency

Live time has increased by 21% from
PRL2022.

Sharp spectral softening starting at
E~10TeV is getting clearer.
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= Spectral fit with Double Broken Power Law
# (statistical error only)
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Helium event selection

selection

Brief description

1. Event trigger

HE trigger

2. Geometrical acceptance

Track going through the detector from the top to the bottom is selected.

3. Track quality cut

Reliability of Kalman Filter fitting in IMC is checked.

4. Electron rejection

Electron events are rejected using the energy deposit within one Moliere radius
along the track.

5. Off-acceptance cut

Residual events crossing the detector from the sides are rejected.

6. Charge identification in
CHD and IMC (see later
slide)

Charge identification using the energy deposit in CHD and IMC (before shower
development starts) is performed to reject proton events, mainly.
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Counts

Charge identification (Helium)
in CHD and IMC
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Energy unfolding

Observed/Unfolded
energy spectrum
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The energy resolution of helium is 30-40%.
Therefore, we apply Bayes unfolding to
reconstruct energy.

1. We build response matrix between true
and observed energy spectrum using
MC simulation.

2. We apply unfolding (RooUnfold)
iteratively based on Bayes theorem
with helium and electron background
evaluation.
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Systematic uncertainty (Hel
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Systematic uncertainty in
E<100TeV is less than 10%.

* The uncertainty in E>100TeV

comes from the MC model
dependence and off-acceptance
rejection cuts, mainly.
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 We observe the spectral hardening
starting at
E, = 1.31910113 (stat) 13257 (sys) TeV
This is consistent with DAMPE result
(PRL 2021)
* We also observe spectral softening
starting at
E; = 33.2728(stat)*18(sys)Tev
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Proton/He ratio

e Spectral hardening in
rigidity are consistent
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o/ Summary

* CALET data taking is stably running without any serious problem more than
7 years. We have summarized the helium analysis.

* In proton spectrum, sharp spectral softening starting at E~10TeV is
observed.

* In helium spectrum, both spectral hardening and softening are observed
(PRL 130, 171002 (2023)).

* Helium energy spectrum have a similar shape to proton. The helium
spectral hardening in rigidity is consistent to proton. p/He ratio in
60GV/n<E<60TV/n is consistent to previous measurements.
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