

Observation of spectral structures in the flux of cosmic ray protons with CALET on the International Space Station

> K. Kobayashi (Waseda/JAXA) and P. S. Marrocchesi (Siena/INFN) on behalf of the CALET collaboration Jul. 26th, 2023

- Recent observation of proton flux shows spectral hardening starting a few 100GeV and softening starting ~10TeV.
- Determination of these parameters could below help to understand cosmic ray source, acceleration mechanism, and propagation
- Direct flux measurement up to hundreds of TeV could provide normalization for the ground observation.

Proton flux in PRL2022 (red) compared to other direct and ground measurements

- CALET published a proton flux at 50GeV<E<60TeV in PRL2022 and confirmed hardening around 500 GeV and found softening around 10 TeV.
- We present updated result using data with increased statistics by 21% from K. Kobayashi and P.S. Marrocchesi, ICRC2023 2

CALET detector

JAXA A			CHD (CHarge Detector)
	Material/sensor	Purpose	IMC (Imaging Calorimeter)
	Plastic scintillator + Pivi i 28 paddles (=14x2layers(x,y)) (paddle size: 32x10x450mm)	Charge ID	TASC (Total
IMC	Scifi./W + MAPMT (64anode) 7168 Scifi. (=448x16layers(x,y)) +7 W layers (Scifi. size: 1x1x448mm)	Tracking, charge ID	Absorption Calorimeter)
TASC	PWO scintillator + APD/PD or PMT 192 logs (=16x12layers(x,y)) (Log size: 19x20x326mm)	Energy	In total $30X_0$ thickness (=1.2 λ , 27X ₀ in TASC + 3X ₀ in IMC)

00

Proton event selection

of the			
selection	Brief description		
1. Event trigger	HE trigger in E>300GeV and LE trigger in E<300GeV.		
2. Geometrical acceptance	Track going through the detector from the top to the bottom is selected.		
3. Track quality cut	Reliability of Kalman Filter fitting in IMC is checked.		
4. Electron rejection	Electron events are rejected using the energy deposit within one Moliere radius along the track.		
5. Off-acceptance cut	Residual events crossing the detector from the sides are rejected.		
6. TASC hit consistency	In order to reject the events with mis-reconstructed track, we reject the events which doesn't have consistent energy deposit at the top X/Y layer of TASC where the track is expected to go through from the track reconstruction in IMC.		
7. Shower start in IMC	Shower development starting in IMC is required.		
8. Charge identification in CHD and IMC	Charge identification using the energy deposit in CHD and IMC (before shower development starts) is performed to reject helium events, mainly.		

Event examples

Electron, E=3.05 TeV

Gamma-ray, E=44.3 GeV

Proton, $\Delta E=2.89 \text{ TeV}$

Charge identification in CHD and IMC

- Using the two charge identification parameters $(Z_{CHD} \text{ and } Z_{IMC})$, proton and helium can be clearly separated.
- Total background contaminations are less than 13% in HE sample (630<E<2000GeV), respectively.
- Although charge identification using CHD doesn't work in higher energy region, identification using IMC works and p/He are clearly separated

Energy unfolding

Observed/Unfolded energy spectrum

The energy resolution of proton is 30-40%. Therefore, we apply Bayes unfolding to reconstruct energy.

- 1. We build response matrix between true and observed energy spectrum using MC simulation.
- 2. We apply unfolding (RooUnfold) iteratively based on Bayes theorem with helium and electron background evaluation.

K. Kobayashi and P.S. Marrocchesi, ICRC2023

total uncertainty

- energy dependent uncertainty (sum)
- MC model dependence
- IMC Track consistency with TASC
- Shower start in IMC
- Charge identification cut
 - Energy unfolding
- Beam test configuration
- Systematic uncertainty in E<20TeV is less than 10%.
- The uncertainty in E>20TeV comes from the MC model dependence and charge identification, mainly.

Proton spectrum (50GeV<E<60TeV)

HE: 1925 days of live time (Oct. 2015 – Apr. 2023)

K. Kobayashi and P.S. Marrocchesi, ICRC2023

 $\Phi(E)$: proton flux N(E): number of events in ΔE bin (after background subtraction) $S\Omega$: geometrical acceptance (510cm²sr) T: livetime ΔE : energy bin width $\varepsilon(E)$: detection efficiency

- Live time has increased by 21% from PRL2022.
- Sharp spectral softening starting at E~10TeV is getting clearer.

Summary

- CALET data taking is stably running without any serious problem more than 7.5 years.
- Last year our proton result have been published in PRL 129, 101102 (2022) and we have updated the analysis using data until Apr. 2023.
- We observed a sharp proton spectrum softening starting at 9.8+3.2-2.1TeV. The spectral index changes from -2.6 to -2.9.

backup

Proton spectrum comparison

Single power law fit comparison

