CALETにおけるTeV領域電子の選別手法の改良

早大理工総研,神奈川大工^A, NASA/GSFC/CRESST/UMBC^B, 芝工大シエ^c

赤池陽水, 鳥居祥二, Holger MotzA, Nicholas Cannady^B, 笠原克昌^c, 小林兼好 他 CALET チーム

日本物理学会 第78回年次大会 (2023年)

Electron measurement in the TeV region

TeV electron measurements

Electrons rapidly lose their energy ($\propto E^2$)

- ➡ TeV electrons can arrive from
 - distance: d < 1kpc
 - time: T < 10⁴ yr

Candidate sources are very few like Vela

- ➡ unique structure in TeV region
- identify the cosmic ray source by charged particles

Difficulty of the electron measurements

- Flux in TeV electron is very rare
- Large proton background

Maximum detectable rigidity of AMS-02 is 2TV Calorimeter in space has unique capability to reveal TeV electrons

Instrument of CALET

A 30-radiation length deep calorimeter designed to detect electrons and gammas to 20 TeV and cosmic rays up to 1 PeV

Since the start of operation on the ISS in October 2015, CALET has been accumulating scientific data without any major interruption

Event display of electron candidates

日本物理学会 第78回年次大会 (2023年)

Features of CALET calorimeter

CALET is best suited for observation of possible fine structures in the all-electron spectrum up to the trans-TeV region

Electron Identification

Simple Two Parameter Cut

E<476GeV

- **F**_E: Energy fraction of the bottom layer sum to the whole energy deposit sum in TASC
- $\mathbf{R}_{\mathbf{E}}$: Lateral spread of energy deposit in TASC-X1

Cut Parameter K is defined as follows:

 $K = log_{10}(F_E) + 0.5 R_E (/cm)$

Boosted Decision Trees (BDT)

E>476GeV

In addition to the two parameters in the left, TASC and IMC shower profile fits are used as discriminating variables with 9 parameters

Electron identification at high energy region

The discriminate variables for BDT are optimized;

- Lateral spread : R_F 1.
- 2. Shower development : F_{F}
- 3. *Shower concentration ratio on IMC Y8 : C_F
- The fitting of TASC transition curve ٠
 - α/b 4.
 - 5. b

6.
$$\chi^2/NDF \quad \frac{dE}{dt} = E_0 \frac{b^{\alpha+1}}{\Gamma(\alpha+1)} t^{\alpha} e^{-bt}$$

T_{5%} ($T_{5\%}$: Development the ratio of energy deposit is 5%)

- Exponential fitting of IMC transition curve
 - 8. **p0**

9.

- **p1**
- $\frac{dE}{dt} = e^{(p_1 t + p_0)}$ 10. χ^2/NDF
- *The sum of CHD energy deposit : **S**_{CHD} 11.
- Energy ratio between adjacent IMC layers 12. * R_{max}
 - * New parameters * R₆₇ 13.
 - ➡ The total BG protons are less than 10% up to 7.5 TeV with 70% electron efficiencies

Systematic uncertainties

Energy dependent sources;

- Tracking (EM vs KF)
- Charge selection (CHD vs IMC)
- MC model (EPICS vs Gent4)
- Electron identification (K-cut vs BDT)
- BDT stability

Energy independent sources;

- live time
- long-term stability
- track quality cut
- trigger efficiency (E<30GeV)
- energy scale

Energy spectrum of all-electrons

CALET Observations: Oct.13, 2015 – Dec. 31, 2022 (for 2637 days)

Preliminary spectrum is especially updated in :

- Consistent with AMS-02 up to 2 TeV
- Observe flux suppression above 1 TeV consistent with DAMPE within errors

Fitting to all-electron spectrum

- Fits of the CALET all-electron spectrum in 30 GeV – 4.8 TeV
- Broken power law $J(E) = C(E/100 \ GeV)^{\gamma} (1 + (E/E_b)^{\Delta\gamma/s})^{-s}$ $\gamma = -3.15 \pm 0.01, \Delta\gamma = -0.77 \pm 0.22$ Eb = 761 ± 115 GeV (χ^2 /NDF=3.6/27)
- Exponential cut-off power law [PRL, 2018] $\gamma = -3.10 \pm 0.01$ Ec = 2.854 ± 0.305 TeV (χ^2 /NDF=12/28)
- Single power law γ = -3.18 ± 0.01 (χ^2 /NDF=56/29)

The significance of both fits of softening spectrum is more than 6 σ , which is considerably improved comparing to ~4 σ obtained in PRL2018.

Event-by-Event Analysis

- Proton contamination increases above ~5TeV
- Statistics decrease at these energies that each candidate event can be studied individually
 - ➡ Dedicated event-by-event analysis to evaluate the likelihood of each candidate event

<u>Analysis</u>

- Pickup electron candidates by standard analysis
- Generate simulation data set
- Apply the likelihood analysis using 13 parameters

Simulation data

 Electrons: 10⁵ events for same primary energy and incident direction as flight data candidate

 Protons: 10⁶ events with same incident direction and energy according to E^{-2.7} spectrum from 1 to 10³ times the candidate

Parameters for EBE analysis

18041807-30 F,

18041807-30 TASC Fit b

h_F_E_p Entries 1175 Mean 0.03598 Std Dev 0.01844

10

10

10 10

- Lateral shower spread
- TASC Y6 dep. frac.
- IMC concentration
- CHD sum
- TASC fit shower max.
- TASC fit atten. Const.
- TASC fit 5% depth
- TASC fit χ^2/ndf
- IMC exp. fit const.
- IMC exp. fit slope
- IMC exp. fit χ^2/ndf
- IMC ratio 6-7
- IMC ratio max.

18041807-30 R_e(X,1) [cm]

hRE

18041807-30 C_e

18041807-30 edepRatioIMC67

Event-by-Event Analysis

- Proton contamination increases above ~5TeV
- Statistics decrease at these energies that each candidate event can be studied individually
 - ➡ Dedicated event-by-event analysis to evaluate the likelihood of each candidate event

<u>Analysis</u>

- Pickup electron candidates by standard analysis
- Generate simulation data set
- Apply the likelihood analysis using 13 parameters

Simulation data

 Electrons: 10⁵ events for same primary energy and incident direction as flight data candidate

 Protons: 10⁶ events with same incident direction and energy according to E^{-2.7} spectrum from 1 to 10³ times the candidate

<u>Results</u>

 9 events are selected above 4.8 TeV which have p_{cont} < 0.1

Likelihood distribution of an event

- Since the start of observation in October 2015, CALET has been accumulating the scientific data without any major interruption with stable instrument performance.
- The all-electron (e⁺+e⁻) spectrum in the energy range from 10 GeV to 7.5 TeV observed by the end of Dec. 2022 is reported with statistics higher by a factor of 3.4 since the last publication in PRL2018
- The spectrum up to 2 TeV is well consistent with AMS-02.
- The results at high energies present suppression of the flux above 1 TeV with a considerable significance of more than 6σ over the single power law.
- Advanced analysis for electron candidates above 5 TeV is on going.
- Further observation until Dec. 2024 (at least) are approved by JAXA, and we will improve the measurements with higher statistics and further reduction of the systematic errors, especially in the TeV region.