Highlights from the CALET observations for 7.5 years on the International Space Station

Highlight Talk 2-01 - CRD

Calorimetric Electron Telescope July 26 -- August 3, 2023 Shoji Torii Waseda University, Japan for the CALET Collaboration NAS

Partne

Nagoya, Japan

The 38 th International Cosmic Ray Conference

O. Adriani,^{1,2} Y. Akaike,^{3,4} K. Asano,⁵ Y. Asaoka,⁵ E. Berti,^{2,13} G. Bigongiari,^{6,7} W.R. Binns,⁸ M. Bongi,^{1,2} P. Brogi,^{6,7} A. Bruno,⁹ N. Cannady,^{10,11,12} G. Castellini,¹³ C. Checchia,^{6,7} M.L. Cherry,¹⁴G. Collazuol,^{15,16} G.A. de Nolfo,⁹ K. Ebisawa,¹⁷ A. W. Ficklin,¹⁴ H. Fuke,¹⁷ S. Gonzi,^{1,2,13} T.G. Guzik,¹⁴ T. Hams,¹⁰ K. Hibino,¹⁸ M. Ichimura,¹⁹ K. Ioka,²⁰ W. Ishizaki,⁵ M.H. Israel,⁸ K. Kasahara,²¹ J. Kataoka,²² R. Kataoka,²³ Y. Katayose,²⁴ C. Kato,²⁵ N. Kawanaka,²⁰ Y. Kawakubo,¹⁴ K. Kobayashi,^{3,4} K. Kohri,²⁶ H.S. Krawczynski,⁸ J.F. Krizmanic,¹¹ P. Maestro,^{6,7} P.S. Marrocchesi,⁶⁷ A.M. Messineo,^{7,27} J.W. Mitchell,¹¹ S. Miyake,²⁸ A.A. Moiseev, ^{11,12,29} M. Mori,³⁰ N. Mori,² H.M. Motz,³¹ K. Munakata,²⁵ S. Nakahira,¹⁷ J. Nishimura,¹⁷ S. Okuno,¹⁸ J.F. Ormes,³² S. Ozawa,³³ L. Pacini,^{2,13} P. Papini,² B.F. Rauch,⁸ S.B. Ricciarini,^{2,13} K. Sakai,^{10,11,12} T. Sakamoto,³⁴ M. Sasaki, ^{11,12,29} Y. Shimizu,¹⁸ A. Shiomi,³⁵ P. Spillantini,¹ F. Stolzi,^{6,7} S. Sugita,³⁴ A. Sulaj, ^{6,7} M. Takita,⁵ T. Tamura,¹⁸ T. Terasawa,⁵ S. Torii,³ Y. Tsunesada,^{36,37} Y. Uchihori,³⁸ E. Vannuccini,² J.P. Wefel, ¹⁴ K. Yamaoka,³⁹ S. Yanagita,⁴⁰ A. Yoshida,³³ K. Yoshida,²¹ and W. V. Zober ⁸

PI: Japan Co-PI : Italy Co-PI : USA

1) University of Florence, Italy 2) INFN Florence, Italy 3) WISE, Waseda University, Japan 4) JEM Utilization Center, JAXA, Japan 5) ICRR, University of Tokyo, Japan 6) University of Siena, Italy 7) INFN Pisa, Italy 8) Washington University, St. Louis, USA 9) Heliospheric Physics Laboratory, NASA/GSFC, USA 10) University of Maryland, Baltimore County, USA 11) Astroparticle Physics Laboratory, NASA/GSFC, USA 12) CRESST, NASA/GSFC, USA 13) IFAC, CNR, Italy

14) Louisiana State University, USA 15) University of Padova, Italy 16) INFN Padova, Italy 17) ISAS, JAXA, Japan 18) Kanagawa University, Japan 19) Hirosaki University, Japan 20) YITP, Kyoto University, Japan 21) Shibaura Institute of Technology, Japan 22) ASE, Waseda University, Japan 23) NIPR, Japan 24) Yokohama National University, Japan 25) Shinshu University, Japan 26) IPNS, KEK, Japan

27) University of Pisa 28) NIT(KOSEN), Ibaraki College, Japan 29) University of Maryland, College Park, USA 30) Ritsumeikan University, Japan 31) GCSE, Waseda University, Japan 32) University of Denver, USA 33) NICT, Japan 34) Aoyama Gakuin University, Japan 35) Nihon University, Japan 36) Osaka Metropolitan University, Japan 37) NITEP, Osaka Metropolitan University, Japan 38) QST, Japan 39) Nagoya University, Japan

40) Ibaraki University, Japan

Guest Investigator: Lauren W. Blum (University of Colorado Boulder, USA), M. Teramoto (Kyushu Institute of Technology, Japan)

CALET Payload

Launched on Aug. 19th, 2015 by the Japanese H2-B rocket

Emplaced on JEM-EF port #9 on Aug. 25th, 2015

- Mass: 612.8 kg
- JEM Standard Payload Size:
 - 1850mm(L) × 800mm(W) × 1000mm(H)
- Power Consumption: 507 W (max)
- Telemetry:

Medium 600 kbps (6.5GB/day) / Low 50 kbps

38th ICRC-CALET-HIGHLIGHT TALK

Overview of the CALET Calorimeter

Field of view: ~ 45 degrees (from the zenith): Geometrical Factor: ~ 1,040 cm²sr (for electrons): Thickness: 30 $X_{0,}$ 1.3 λ_{I}

Shoji Torii

Examples of CALET Event Candidates

Electron, E=3.05 TeV

Y-Z View

X-Z View

H

Proton, E_{TASC}=2.89 TeV

Energy Measurement: a wide dynamic range 1-10⁶ MIPs

Energy Measurement: energy scale and resolution

38th ICRC-CALET-HIGHLIGHT TALK

CALET Orbital Operations (during the first 7.5 years)

PCRD0-13

Cosmic-ray All-electron Spectrum up to 7.5 TeV

C-CALET-HIGHLIGHT TALK

9

CRD5-02

Cosmic-ray All-electron Spectrum up to 7.5 TeV

PRL 129 101102 (2022) + CRD1-01

38th ICRC-CALET-HIGHLIGHT TALK

Cosmic-ray Helium Spectrum

PRL 130 171002 (2023) + CRD1-02

Comparison of Proton and Helium Spectrum PRL 130 171002 (2023) + CRD1-02

- Both of proton and helium spectrum have a similar structure of hardening and softening around same region of rigidities.
- The softening of p & He spectrum around 10 TV indicates a possible relation to the energy limit of shock wave acceleration in SNR.

- The spectral index of helium is harder than that of proton (by ~0.1) in the whole rigidity range.
- Possible change of the spectral index of p/He ratio seen above 10 TV will be carefully checked by analyzing higher statistics data in future.

Nuclei Measurement: Charge Identification with CHD and IMC

Single element identification for p, He and light nuclei is achieved by CHD+IMC charge analysis.

Observations of Cosmic-ray Nuclei from C to Fe

Carbon, Oxygen and Boron Energy Spectra PRL 125 251102 (2020) + CRD4-04

Flux x E^{2.7} vs kinetic energy per nucleon [8.4 GeV- 3.8 TeV]

B/C, B/O and C/O Flux Ratio

PRL 125 251102 (2020) + CRD4-04

- Flux ratios of B/C and B/O are in agreement with AMS02 and lower than DAMPE result above 300 GeV/n, although consistent within the error bars.
- C/O flux ratio as a function of energy is in good agreement with AMS-02.
- At E > 30 GeV/n the C/O ratio is well fitted to a constant value 0.90±0.03 with χ²/dof = 8.1/13.
 ⇒ C and O fluxes have the same energy dependence.
- At E < 30 GeV/n C/O ratio is slightly softer.
 - \Rightarrow secondary C from O and heavier nuclei spallation

Spectral Fit of B/C and B/O

Simultaneous fit to B/C and B/O (E>25 GeV/n) with same parameters except normalization

SPL fit $\Gamma = -0.376 \pm 0.014$ (χ^2 /dof = 19/27)DPL fit $\Delta\Gamma = 0.22 \pm 0.10$ (χ^2 /dof = 15/26)

Leaky-box model fit [ApJ 752 69 (2012)]

$\Phi_B(E)$	$\lambda(E)\lambda_B$	[1	$\Phi_O(E)$	1	$\Phi_B(E) =$	$\lambda(E)\lambda_B$	$\begin{bmatrix} 1 \\ -1 \end{bmatrix}$	$\Phi_C(E)$	1	
$\overline{\Phi_C(E)}$ –	$\overline{\lambda(E) + \lambda_B}$	$\left[\frac{\lambda_{C\to B}}{\lambda_{C\to B}}\right]$	$\overline{\Phi_C(E)} \overline{\lambda}$	$O \rightarrow B$	$\Phi_O(E)$	$\lambda(E) + \lambda_B$	$\lambda_{O \to B}$	$\Phi_O(E)$	$\lambda_{C \to B}$	

 $\lambda(E)$: mean escape path length $\lambda(E) = kE^{-\delta} + \lambda_0$

 λ_0 : residual path length

See details of assumption in CRD4-04 by Paolo Maestro

 δ : diffusion coefficient spectral index

Fit parameters	λ_0 =0 fixed	λ_0 free		
k (g/cm ²⁾)	13.1 ± 0.2	13.0 ± 0.3		
δ	0.61 ± 0.01	0.81 ± 0.04		
$\lambda_0 (g/cm^2)$	0	1.17 ± 0.16		
χ^2 /dof	58.3/38	17.9/37		

Significance of $\lambda_0 \neq 0 > 5\sigma$ \Rightarrow Residual path length could explain the flattening of B/C, B/O ratios at high energies.

Kinetic Energy [GeV/n] | ICRC-CALET-HIGHLIGHT TALK

The flux ratio between light nuclei (He, C, O) is constant above 100 GeV/n.

CRD2-02

Iron Energy Spectrum

PRL 126 241101 (2022) + CRD2-05

Fe/O, Fe/C and Fe/He are compatible with a constant above 100 GeV/n within errors. \Rightarrow Fe, O, C follow similar propagation

Flux Ratios of Nickel to Primary Elements

CRD2-02

Ultra-heavy Cosmic-ray Nuclei (26 < Z < 44)

CRD3-06 + PCRD11-15

The CALET UH element ratios relative to Fe are consistent with Super-TIGER and ACE abundances. Shoji Torii

Jöth ICKC-CALET-HIGHLIGHT TALK

CALET γ -ray Sky Map and Energy Spectra

GA17-06 + PGA2-10

Effective area: ~400 cm² (>2 GeV)
 Angular resolution: < 0.2° (> 10 GeV)
 Energy resolution: ~2% (> 10 GeV)

Shoji Torii

Gamma-ray Bursts and GW Follow-up

ApJ 933:85 (2022) + PMM GW3-17

CGBM Specifications

	нхм	SGM
Crystal	LaBr3(Ce)	BGO
Number of detectors	2	1
Diameter [mm]	66.1 (small) 78.7 (large)	102
Thickness [mm]	12.7	76
Energy range [keV]	7-1000	40-20000
Field of view	~3 sr	~8 sr

X-ray and gamma-ray bands

High-energy gamma-ray in the calorimeter

- Follow-up of LIGO/Virgo GW observations during O3 & O4

CGBM has detected 327 GRBs as of June 2023.

Duration distribution measured by SGM (40 - 1000 keV)

□ We developed **automatic pipelines to process CGBM and CAL data** to analyze O4 events with higher event rates.

□ 169 events have been reported via GCN Notice in ER15 and O4, and the developed pipelines have been triggered by LVC NOTICE and processed CALET data, and enabled us to check many GW events.

CALET proton (a) and electron (b) count rates at the average rigidity of 3.8 GV as a function of neutron monitor count rates at the Oulu station during the descending phase in the 24th solar cycle (closed circles) and the ascending phase in the 25th solar cycle (open circles).

- We have observed a clear charge-sign dependence of the solar modulation of GCRs, showing that variation amplitude of C_{e^-} is much larger than that of C_p at the same average rigidity.
- We also have succeeded in reproducing variations of C_{e^-} and C_p simultaneously with a numerical drift model of the solar modulation, which implies that the drift effect plays a major role in the long-term modulation of GCRs.
- We also find a clear difference between ratios, C_p/C_{NM}, during the descending phase of the 24th solar cycle and the ascending phase of the 25th solar cycle.

Space Weather Phenomena with CALET

GRL 49 (2022) + PCRD3-14

- To identify relativistic electron precipitation (REP) in the CALET dataset an algorithm was developed which use self organizing maps (SOM), an unsupervised machine learning technique, to both detect and categorize potential REP events.
- For a period from October 2015 to October 2021 this method found a total of 1448 rapid REP events and 21301 smooth profile events.

CALET and Radiation Belt Science Probes (RBSP)

664 events were identified in RBSP-A data and 443 events for RBSP-B Distribution of REP Events in MLT and L Shell (Smooth Events Removed) Distribution of EMIC Events in MLT and L Shell Coincident REP/EMIC Events

Spatial distribution in terms of magnetic local time (MLT) and L shell for observed REP events (left) and observed EMIC wave events (right).

38th ICRC-CALET-HIGHLIGHT TALK

Spatial distribution of coincident REP/EMIC wave events in MLT and L.

CALET was successfully launched in August 2015 and installed on the JEM-EF module on the ISS

- Operational over 2800 days with 86% live time, total triggers approaching 4 billion ۲ Continuous on-orbit updates from ground calibration Stable operations over a range of observing modes continue
 - Astropart. Phys. 91, 1 10 (2017) Astropart. Phys. 100, 29 – 37 (2018)

ApJS 238:5 (2018)

ApJ 933:85 (2022)

ApJL 829:L20 (2016)

Analysis of CR events continues, extending to higher energies and charges

All-electron spectrum in the range 11 GeV – 4.8 TeV	PRL 120, 261102 (2018)	(2 nd update)
Proton spectrum in the range 50 GeV – 60 TeV	PRL 129, 101102 (2022)	(2 nd update)
Carbon and oxygen spectra in the range 10 GeV/n – 2.2 TeV/n	PRL 125, 251102 (2020)	1 st paper
Iron spectrum in the range 50 GeV/n – 2 TeV/n	PRL 126, 241101 (2021)	1 st paper
Nickel spectrum in the range 8.8 GeV/n – 240 GeV/n	PRL 128, 131103 (2022)	1 st paper
Boron spectrum in the range 8.4 GeV/n – 3.8 TeV/n	PRL 129, 251103 (2022)	new
Helium spectrum in the range 40 GeV – 250 TeV	PRL 130, 171002 (2023)	new
Preliminary analysis of ultra-heavy cosmic-ray abundances	see W.Zober CRD3-06 (ICRC2023)	preliminary

- Analysis of gamma-ray sources and transients continues Calorimeter instrument response characterized GW follow-up and GRB analysis with CGBM & CAL Counterpart search in LIGO/Virgo O3 with CGBM & CAL
- Analysis of transient heliospheric and space weather phenomena underway Charge-sign dependence of Solar modulation PRL 130, 211001 (2023) Solar energetic particle and relativistic electron precipitation events see A.Ficklin PCRD2-14(ICRC2023)

Extended operations approved by JAXA/NASA/ASI in March 2021 through the end of 2024 (at least)

new

List of CALET Talks at ICRC2023 +12 Posters

ID	Presenter	Title	Date
CRD5-02	Y. Akaike	Energy spectrum of cosmic-ray electron and positron measured with CALTE on the International Space Station	July 29
CRD1-01	K. Kobayashi	Observation of spectral structures in the flux of cosmic ray protons with CALET on the International Space Station	July 26
CRD1-02	P. Brogi	Helium flux and its ratio to proton flux in cosmic rays measured with CALET on the International Space Station	July 26
CRD4-04	P. Maestro	Boron flux in cosmic rays and its flux ratio to primary species measured with CALET on the International Space Station	July 28
CRD2-05	F. Stolzi	Iron and Nickel fluxes measured by CALET on the International Space Station	July 27
CRD2-02	C. Checchia	Flux ratios of primary elements measured by CALET on the International Space Station	July 27
CRD3-06	W. Zober	Results of the Ultra-Heavy Cosmic-Ray Analysis with CALET on the International Space Station	July 27
GA17-06	M. Mori	Results from CALorimetric Electron Telescope (CALET) Observations of Gamma-rays	July 31
DM5-03	H. Motz	Dark Matter Limits from the CALET Electron+Positron Spectrum with Individual Astrophysical Source Background	Aug. 2

Thank you for your attention

Towards an Interpretation of the CALET All-electron Spectrum

Preliminary results using ICRC2021 data are presented for :
 Interpretation of the electron + positron spectrum by astrophysical sources at PCRD2-07
 Dark Matter limits with individual astrophysical source background at DM5-03

See the details in the presentations