



CALET observation of high-energy gamma-rays and toward better sensitivity above 100 GeV



# CALETによる高エネルギーガンマ線 観測と100 GeV以上の領域の感度 向上に向けて

## 立命館大理工,早大理工総研<sup>A</sup>, NASA/GSFC<sup>B</sup>, Louisiana State Univ.<sup>c</sup>, 森正樹,水野隼稀,赤池陽水<sup>A</sup>,小林兼好<sup>A</sup>, 鳥居祥二<sup>A</sup>, N. Cannady<sup>B</sup>,川久保雄太<sup>c</sup>, M.L. Cherry<sup>c</sup>, 他CALETチーム

M. Mori, T. Mizuno, Y. Akaike, K. Kobayashi, S. Torii, N. Cannady, Y. Kawakubo, M.L. Cherry for the CALET collaboration

#### 日本物理学会2023年春季大会(オンライン)2023年3月22~25日

Cannady et al., ApJS 238:5 (2018)

# Gamma Ray Event Selection

= Electron Selection Cut + Gamma-ray ID Cut w/ Lower Energy Extension



well contained, constant shower development

larger spread <sub>2</sub>

## CALET triggers and gamma-ray observation



- HE trigger mode: always ON
- LE-γ mode: ON when geomag.lat. < 20° or CALET Gamma-ray Burst Monitor (CGBM) is triggered



# CALET performance

- **HE** trigger (>10 GeV) is always active in normal observations
- LE-γ trigger (>1 GeV) mode is activated when the geomagnetic latitude is below 20° or following a CALET Gamma-ray Burst Monitor (CGBM) burst trigger



Asaoka et al, Astropart. Phys. 91, 1 (2017)

Cannady et al., ApJS 238, 5 (2018)

• Good energy resolution at high energies thanks to the thick calorimeter!

Cannady, COSPAR2022

## Gamma-ray skymaps

November 2015 – February 2022

Preliminary



Note: Exposure is not uniform due to the ISS orbit (inclination 51.6°)

Preliminary

## Energy spectra for bright point sources

#### November 2015 – February 2022



Consistent with Fermi-LAT spectra

## Gamma-ray spectra (LE-γ & HE)

### Preliminary



• The spectra (Galactic diffuse + point sources) look fairly consistent with those by Fermi-LAT.

# Transient follow-ups

- Trigger of CGBM instrument prompts CALET to temporarily activate LE-γ mode to search for transient counterparts
- Transient analysis pipeline allows for quick follow-up of GRBs or LIGO/Virgo GW triggers
- Observations corresponding to triggers in LIGO/Virgo O3 run recently published in Adriani et al., ApJ 933 85 (2022).



Figure 10. 90% confidence level upper limits observed by CAL in the energy range 1–10 GeV during the interval  $\pm 60$  s around the time of GW190408an reported by LIGO/Virgo. The intensity scale is given in units of erg cm<sup>-2</sup> s<sup>-1</sup>. Red and blue circles are the HXM and SGM fields of view, respectively.

• Waiting for O4 to start...

#### Cannady, COSPAR2022

# Improvements to HE sensitivity (1)

 At higher energies, charge selection with CHD becomes contaminated with backscattered secondary particles.



- New selection defined to use looser cuts in CHD and incorporating first two layers of IMC for charged primary rejection
- Preliminary results show significant increase in effective area E > 100 GeV
- Testing of selection and contamination being finalized for implementation in all analyses soon!



9

## Original (ApJS) definition of geometry E

| Geo A (1)    | Geo EB (11)  | Geo ED (12) |
|--------------|--------------|-------------|
|              |              |             |
|              |              | 24 cm       |
| Geo EB3 (13) | Geo ED3 (14) | Geo E (5)   |
|              |              |             |
|              |              |             |

| Acceptance | Conditions |                       | and the second second second second second | Geom. Fact. $[cm^2 sr]$ |
|------------|------------|-----------------------|--------------------------------------------|-------------------------|
| A          | CHD top    | TASC top <sup>*</sup> | TASC 6y bottom <sup>*</sup>                | 419.1                   |
| EB         | CHD top    | TASC top <sup>*</sup> | TASC 6y bottom                             | 91.03                   |
| ED         | CHD top    | TASC top*             | TASC path $> 24$ cm                        | 121.6                   |
| EB3        | CHD top    | TASC top*             | TASC 3y bottom*                            | 51.97                   |
| ED3        | CHD top    | TASC top*             | TASC 3y bottom                             | 127.9                   |
| E          | CHD top    | TASC top <sup>*</sup> |                                            | 373.8                   |

Table 3.1: Requirements for the LE- $\gamma$  geometrical conditions. The conditions marked with asterisks denote that the intersection point must be more than 2 cm from the edge of the layer boundary.

#### LE- $\gamma$ analysis uses A–E: total 1185.4 cm<sup>2</sup>sr HE analysis uses A–ED: total 631.73 cm<sup>2</sup>sr

#### Compare to standard acceptance:

|   | Condition                                                                                                               | SΩ[cm2sr]                          |
|---|-------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| A | CHD-X-top<br>&& CHD-Y-top<br>&& TASC-top (inside 1 log)<br>&& TASC-bot (inside 1 log)                                   | A: 415.7 ± 1.1                     |
| В | CHD-X-top<br>&& CHD-Y-top<br>&& TASC-top<br>&& TASC-top<br>&& ! { TASC-top (inside 1log)<br>&& TASC-top (inside 1log) } | B: 154.6±0.7<br>A+B: 570.3±1.3     |
| С | IMC5th layer<br>&& TASC-top<br>&& TASC-bot<br>&& !{ CHD-X-top<br>&& CHD-Y-top }                                         | C:230.1±0.8<br>A+B+C:800.4±1.6     |
| D | IMC5th layer<br>&& TASC-top<br>&& path length in TASC > thickness of TASC<br>&& ITASC-bot                               | D: 236.4±0.8<br>A+B+C+D:1036.6±1.8 |

## Revised definition of geometry E

|                      |              |              | Acceptance Conditions Geom. Fact. [cm <sup>*</sup> sr]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------|--------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $C \rightarrow A(1)$ |              |              | A CHD top TASC top* TASC 6y bottom* 419.11 419.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Geo A (1)            | Geo EB (11)  | Geo ED (12)  | EB CHD top TASC top* TASC 6y bottom 91.03 510.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      |              |              | ED CHD top TASC top* TASC path > 24 cm 121.55 631.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                      |              |              | EB3 CHD top TASC top* TASC 3y bottom* 51.97 683.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                      |              |              | ED3 CHD top TASC top* TASC 3y bottom 127.94 811.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                      |              |              | E CHD top TASC top* 372.81 1184.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                      |              |              | Table 3.1: Requirements for the Line geometrical conditions. The conditions margin w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                      |              |              | asterisks denote that the intersection point must be more than 2 cm from the edge of t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                      |              |              | laver boundary.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                      |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                      |              |              | Chauld have been bettern of TACC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      |              | <b>24 cm</b> | Should have been bottom of IASC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                      |              |              | X1 rather than ton for better <u><u><u></u><u></u><u></u><u></u></u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                      |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                      |              |              | containment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                      |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                      |              |              | מ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                      |              |              | Pottor operative recolution for only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Geo EB3 (13)         | Geo ED3 (14) | Geo E (5)    | better energy resolution for only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                      |              | <b>x 7</b>   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                      |              |              | small change in geometrical factor:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                      |              |              | small change in geometrical factor:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                      |              |              | small change in geometrical factor:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                      |              |              | <ul> <li>small change in geometrical factor:</li> <li>Acceptance Conditions</li> <li>A CHD top TASC top* TASC 6v bottom*</li> <li>A19.11</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                      |              |              | <ul> <li>small change in geometrical factor:</li> <li>Acceptance Conditions</li> <li>A CHD top TASC top* TASC 6y bottom*</li> <li>EB CHD top TASC X1 bot* TASC 6y bottom</li> <li>99.20 518.31</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                      |              |              | Acceptance       Conditions       Geom. Fact. [cm <sup>2</sup> sr]         A       CHD top       TASC top*       TASC 6y bottom*         EB       CHD top       TASC X1 bot*       TASC 6y bottom         ED       CHD top       TASC X1 bot*       TASC path > 24 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      |              |              | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                      |              |              | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                      |              |              | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                      |              |              | Acceptance       Conditions       Geom. Fact. [cm <sup>2</sup> sr]         A       CHD top       TASC top*       TASC 6y bottom*         H       CHD top       TASC top*       TASC 6y bottom         EB       CHD top       TASC X1 bot*       TASC 6y bottom         ED       CHD top       TASC X1 bot*       TASC path > 24 cm         ED3       CHD top       TASC X1 bot*       TASC 3y bottom*         ED3       CHD top       TASC X1 bot*       TASC 3y bottom*         E       CHD top       TASC X1 bot*       TASC 3y bottom*         E       CHD top       TASC X1 bot*       TASC 3y bottom         E       TASC X1 bot*       TASC 3y bottom       125.78         E       CHD top       TASC X1 bot*       TASC 3y bottom       125.78         E       CHD top       TASC X1 bot*       TASC 3y bottom       125.78       819.51         E       CHD top       TASC X1 bot*       TASC 3y bottom       125.78       819.51 |
|                      |              |              | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                      |              |              | AcceptanceConditionsGeom. Fact. $[cm^2sr]$ ACHD topTASC top*TASC 6y bottom*EBCHD topTASC X1 bot*TASC 6y bottomEDCHD topTASC X1 bot*TASC 6y bottomEB3CHD topTASC X1 bot*TASC 3y bottom*ED3CHD topTASC X1 bot*TASC 3y bottom*ECHD topTASC X1 bot*TASC 3y bottom*ECHD topTASC X1 bot*TASC 3y bottomECHD topTASC 3y bot                                     |



This selection puts more weight in TASC energy deposit.

## MC datasets

- COSMOS 8.039/EPICS 9.28
- Set A
  - Fixed direction (zenith 19.5°, azimuth 30°)
  - Fixed position (passing the center of TASC top)
  - Energy:  $10^{1.4} 10^{3.6}$  GeV ( $10^{0.2}$  step), 20,000 events each
- Set B
  - Uniform direction (zenith  $0 60^{\circ}$ , azimuth  $0 360^{\circ}$ )
  - Uniform position (55cm×55cm above 2cm of CHD top)
  - Energy: 10<sup>1.4</sup> 10<sup>3.6</sup> GeV (10<sup>0.2</sup> step), 200,000 events each

## Comparison of 'RitsumeiGamma' with 'CaletGamma'



## Comparison of 'RitsumeiGamma' with 'CaletGamma'



Mizuno, master thesis, Ritsumeikan University

# Opening angle (between true and reconstructed) distribution



Angular resolution is similar but slightly better in RitsumeiGamma.

# Summary

- CALET has been observing celestial gamma ray above 1 GeV for more than 7 years since its launch in October 2015.
- Improvements to high-energy (>100 GeV) sensitivities are going on...
  - Present analysis is optimized for the GeV energy range.
  - Significant increase in effective area is expected in the 100 GeV region with the new analysis under development if applied to Monte Carlo data.
  - Next, we try to apply the new analysis to flight data.