24pW2-7

NAS

Partne

ISS搭載CALETによる7年間の 軌道上観測の最新成果

CALET Calorimetric Electron Telescope

on the International Space Station

鳥居祥二 早稲田大学理工総研 他CALET国際研究チーム

日本物理学会2023年春季大会(オンライン) 2023年3月24日

PI: Japan

Co-PI : Italy

Co-PI: USA

O. Adriani,^{1, 2} Y. Akaike,^{3, 4} K. Asano,⁵ Y. Asaoka,⁵ E. Berti,¹ G. Bigongiari,^{6, 7} W.R. Binns,⁸ M. Bongi,^{1, 2} P. Brogi,^{6, 7} A. Bruno,⁹ J.H. Buckley,⁸ N. Cannady,^{10, 11, 12} G. Castellini,¹³ C. Checchia,^{6, 7} M.L. Cherry,¹⁴ G. Collazuol,^{15, 16} G.A. de Nolfo,⁹ K. Ebisawa,¹⁷ A. W. Ficklin,¹⁴ H. Fuke,¹⁷ S. Gonzi,^{1, 2} T.G. Guzik,¹⁴ T. Hams,¹⁰ K. Hibino,¹⁸ M. Ichimura,¹⁹ K. Ioka,²⁰ W. Ishizaki,⁵ M.H. Israel,⁸ K. Kasahara,²¹ J. Kataoka,²² R. Kataoka,²³ Y. Katayose,²⁴ C. Kato,²⁵ N. Kawanaka,²⁰ Y. Kawakubo,¹⁴ K. Kobayashi,^{3, 4} K. Kohri,²⁶ H.S. Krawczynski,⁸ J.F. Krizmanic,¹¹ P. Maestro,^{6, 7} P.S. Marrocchesi,^{5, 7} A.M. Messineo,^{27, 7} J.W. Mitchell,¹¹ S. Miyake,²⁸ A.A. Moiseev,^{29, 11, 12} M. Mori,³⁰ N. Mori,² H.M. Motz,³¹ K. Munakata,²⁵ S. Nakahira,¹⁷ J. Nishimura,¹⁷ S. Okuno,¹⁸ J.F. Ormes,³² S. Ozawa,³³ L. Pacini,^{1, 2, 13} P. Papini,² B.F. Rauch,⁸ S.B. Ricciarini,^{13, 2} K. Sakai,^{10, 11, 12} T. Sakamoto,³⁴ M. Sasaki,^{29, 11, 12} Y. Shimizu,¹⁸ A. Shiomi,³⁵ P. Spillantini,¹ F. Stolzi,^{6, 7}S. Sugita,³⁴ A. Sulaj,^{6, 7} M. Takita,⁵ T. Tamura,¹⁸ T. Terasawa,⁵ S. Torii,³ Y. Tsunesada,^{36, 37} Y. Uchihori,³⁸ E. Vannuccini,² J.P. Wefel,¹⁴ K. Yamaoka,³⁹ S. Yanagita,⁴⁰ A. Yoshida,³³ K. Yoshida,²¹ and W. V. Zober ⁸

University of Florence, Italy
 INFN Florence, Italy
 WISE, Waseda University, Japan
 JEM Utilization Center, JAXA, Japan
 ICRR, University of Tokyo, Japan
 University of Siena, Italy
 INFN Pisa, Italy
 Washington University, St. Louis, USA
 Heliospheric Physics Laboratory, NASA/GSFC, USA
 University of Maryland, Baltimore County, USA
 Astroparticle Physics Laboratory, NASA/GSFC, USA
 CRESST, NASA/GSFC, USA
 IFAC, CNR, Italy

- 14) Louisiana State University, USA
 15) University of Padova, Italy
 16) INFN Padova, Italy
 17) ISAS, JAXA, Japan
 18) Kanagawa University, Japan
 19) Hirosaki University, Japan
 20) YITP, Kyoto University, Japan
 21) Shibaura Institute of Technology, Japan
 22) ASE, Waseda University, Japan
 23) NIPR, Japan
 24) Yokohama National University, Japan
 25) Shinshu University, Japan
- 26) IPNS, KEK, Japan

- 27) University of Pisa
- 28) NIT(KOSEN), Ibaraki College, Japan
- 29) University of Maryland, College Park, USA
- 30) Ritsumeikan University, Japan
- 31) GCSE, Waseda University, Japan
- 32) University of Denver, USA
- 33) NICT, Japan
- 34) Aoyama Gakuin University, Japan
- 35) Nihon University, Japan
- 36) Osaka Metropolitan University, Japan
- 37) NITEP, Osaka Metropolitan University, Japan
- 38) QST, Japan
- 39) Nagoya University, Japan
- 40) Ibaraki University, Japan

Guest Investigator: Lauren W. Blum (University of Colorado Boulder, USA), M. Teramoto (Kyushu Institute of Technology, Japan)

日本物理学会2023年春季大会(オンライン) 24pW2-7

CALET Payload

Launched on Aug. 19th, 2015 by the Japanese H2-B rocket

Emplaced on JEM-EF port #9 on Aug. 25th, 2015

- Mass: 612.8 kg
- JEM Standard Payload Size: $1850mm(L) \times 800mm(W) \times 1000mm(H)$
- Power Consumption: 507 W (max)
- Telemetry:

Medium 600 kbps (6.5GB/day) / Low 50 kbps 3

CALET Calorimeter and Capability

CALET Performance of Observations on the ISS

Accumulated observation time (live, dead) Energy deposit (in TASC) spectrum: 1 GeV-1 PeV [hr] [151013-230228] High Energy Trigger (2696 days) 60000 Time Total Observation Time (2.29×10⁸sec) Number of Events Live Time (1.96×10⁸sec) 50000 15.10.13-23.02.28 10⁸ Dead Time (Fraction 14.2%) Number of HE triggers I F-~1.77 billion 40000 Trigger Total number of >1 GeV triggers ~3.86 billion 30000 **HE-Trigger** 10^{6 ⊦} Trigger Rate : ~ 8.9 Hz All particles 20000 Cut-off 10000 Knee Rigidity 10^{4} 60101 161231 181231 211231 221231 171231 200101 201231 1PeV 10³ 1GeV Date [yymmdd UT] ~9 order of High-energy trigger (> 10 GeV) statistics: 10² magnitude Operational time **2696 days (> 7 years)**^(*) (*) as of Feb. 28, 2023 10 Live time fraction ~ 86% Exposure of HE trigger ~235 m² sr day 10^{2} 10^{3} 10⁵ 10⁶ 10^{4} 10 10^{7} HE-gamma point source exposure TASC Energy Deposit Sum [GeV] ~4.2 m² day (for Crab, Geminga)

- Direct Measurement of the Nickel Spectrum in Cosmic Rays in the Energy Range from 8.8 GeV/n to 240 GeV/n with CALET on the International Space Station, O. Adriani et al. (CALET Collaboration), Physical Review Letters 128, 131103 (2022)
- Observation of Spectral Structures in the Flux of Cosmic-Ray Protons from 50 GeV to 60 TeV with CALET on the ISS, O. Adriani et al. (CALET Collaboration), Physical Review Letters 129, 101102 (2022) (highlighted by Editors' Suggestion)
- Cosmic-ray boron flux measured from 8.4 GeV/n to 3.8 TeV/n with the Calorimetric Electron Telescope on the International Space Station, O. Adriani et al. (CALET Collaboration), Physical Review Letters 129, 251103 (2022)
- CALET search for electromagnetic counterparts of gravitational waves during the LIGO/Virgo O3 run,
 O. Adriani et al. (CALET Collaboration), The Astrophysical Journal, 933:85 (16pp), 2022 July 1
- EMIC-Wave Driven Electron Precipitation observed by CALET on the International Space Station, A.Bruno, L. W. Blum, G. A. de Nolfo, R. Kataoka, S. Torii, A. D. Greeley, S. G. Kanekal, A. W. Ficklin, T. G. Guzik and S. Nakahira, Geophysical Research Letter 49, e2021GL097529

Cosmic-ray All-electron Spectrum (update: as of May 30, 2021)

日本物理学会2023年春季大会(オンライン) 24pW2-7

Observations of Cosmic-ray Nuclei from C to Fe

日本物理学会2023年春季大会(オンライン) 24pW2-7

Carbon and Oxygen energy spectra PRL 125, 251102 (2020) [10 GeV/n, 2.2 TeV/n]

24pW2-9: Y. Akaike

Carbon and Oxygen energy spectra PRL 125, 251102 (2022) [10 GeV/n, 2.2 TeV/n]

- The spectra of Carbon and Oxygen show a clear hardening around 200-300 GeV/n.
- It is consistent with hardening observed in p and He within errors, in the energy (per charge) region of 400-600 GeV/z.

Spectra of Cosmic-ray Nuclei from C to Ni

<mark>24pW2-9: Y.Akaike</mark>

Carbon and Oxygen energy spectra PRL 125, 251102 (2020) [10 GeV/n, 2.2 TeV/n] (a) Carbon s⁻¹ (GeV/n)^{1.7}. 35 $\Delta \gamma = 0.166 \pm 0.042$ CALET — Fit with DPL Fit with SPL, extrapolation with $\Delta \gamma = 0$ ۶ 25 Flux [m⁻² $\gamma = -2.663 \pm 0.014$ $E_0 = (215 \pm 54) \text{ GeV}/n$ E^{2.7} (GeV/n)^{1.7}] (b) Oxygen $\Delta \gamma = 0.158 \pm 0.053$ CALET — Fit with DPI Fit with SPL, extrapolation with Δy=0 Š × Flux [m⁻² $\gamma = -2.622 \pm 0.008$ $E_0 = (264 \pm 53) \text{ GeV}/n,$ E^{2.7} 10^{2} 10^{3} 10 Kinetic Energy [GeV/n]

- The spectra of Carbon and Oxygen show a clear hardening around 200-300 GeV/n.
- It is consistent with hardening observed in p and He within errors, in energy region of 400-600 GeV/Z.
- However, the hardening is not observed in Iron spectrum, and Nickel spectrum shows a similar structure up to 240GeV/n.

Iron energy spectrum

Nickel energy spectrum

PRL 126,131103 (2022) [8.8 GeV/n, 240 GeV/n]

日本物理学会2023年春季大会(オンライン) 24pW2-7

<mark>24pW2-9: Y. Akaike</mark>

PRL 129, 251103 (2022)

First precise measurements of B/C ratio up to the TeV region. *) DAPME published a similar result at same timing. Boron and Carbon energy spectra are fitted by Double Power Law functions. $\Delta \gamma$ is the change of spectral index above the transition energy of Carbon, E_0^{C} .

Energy Spectrum of Diffuse Component

- Effective area: ~400 cm² above 2 GeV, decreases above 100 GeV => Improvement by 24pW2-10: M. Mori
- Angular resolution: < 0.2° above 10 GeV
 Energy resolution: ~5% at 10 GeV

Diffuse Gamm-ray Spectrum Compared with Fermi-LAT

LE-γ + HE November 2015 – February 2022

Preliminary

(Fermi data: analyzed from public data

Averaged Fermi data [on plane] 10^{-4} LE-y Averaged Fermi data [off plane] (CALET) on plane (CALET) off plane JP. 2J 10-5 E² flux [GeV cm⁻² 10^{-6} 10^{-7} HE 10¹ 10² 10° 10³ Energy [GeV] "On-plane": |*l*| < 80° & |*b*| < 8°, "Off-plane": |*b*| > 10°

Gamma-ray Bursts and GW Follow-up

- The low energy (<10GeV) electron and proton observations have being carried out since the start of CALET operations (Oct., 2015) on the International Space Station.
- The results for solar modulation are now interpreted by a drift model by S. Miyake (ICRC2017).

Space Weather Phenomena with CALET

Research using the public data archived at ISAS/DARTS https://data.darts.isas.jaxa.jp/pub/calet/cal-v1.1/CHD/level1.1/obs/

EMIC-Wave Driven Electron Precipitation observed by CALET on the International Space Station (*Geophysical Research Letters* **49**, e2021GL097529)

Observations by CALET and Van Allen Probes

The REP events observed simultaneously by CALET and the Arase satellite (ERG)

24pW2-12: M. Teramoto

CALET: Summary and Future Prospects

- CALET was launched on Aug. 19th, 2015. The observation campaign started on Oct. 13th, 2015. Excellent performance and remarkable stability of the instrument have been confirmed.
- As of Feb. 28, 2023, total observation time is 2969 days (> 7 years) with live time fraction close to 86%. Nearly 3.86 billion events collected with low energy trigger (> 1 GeV) and 1.77 billion events with high energy trigger (> 10 GeV).
- Accurate calibrations have been performed in the energy measurements established in 1 GeV-1PeV.
- □ Following results of the cosmic-ray spectra have been obtained by now.
- Measurement of electron + positron spectrum in 11 GeV- 4.8 TeV.
- Direct measurement of proton and Helium in 50 GeV ~ 60 or 50 TeV energy range, and of Carbon and Oxygen spectra in 10 GeV/n -2.2 TeV/n: Spectral hardening was consistently observed around a few hundred GeV/n. B/C flux is precisely measured up to 3.8 TeV/n.
- Iron and Nickel spectra were measured to energies beyond those covered by previous experiments.
 Continuous observations of GRBs, Solar Modulation and REP events have being carried out.
- CALET observation has successfully been carried out over 7 years, and is approved to be extended for further 4 years (at least) until the end of 2024 (or more).
- ✓ We greatly appreciate JAXA staffs for perfect support of the CALET operation at the TKSC of JAXA !!
- ✓ This work is partially supported by JSPS KAKENHI Kiban (S) Grant Number 19H05608 (2019-2023FY).

Main Science Goals and Status of the Analysis

Scientific Objectives	Observables	Energy Reach	Reported	Reference (Latest)	Present
Cosmic-ray origin and acceleration	Electron spectrum	1 GeV – 20 TeV	to 4.8 TeV	PRL 120, 261102 (2018)	11 GeV – 4.8 TeV
	Proton spectrum	10 GeV – 1 PeV	to 60 TeV	PRL 129, 101102 (2022)	50 GeV – 60 TeV
	Helium spectrum	10 GeV – 1 PeV	To 50 TeV	PoS (ICRC2021), 101	50 GeV – 50 TeV
	Carbon and Oxygen spectra	10 GeV – 1 PeV	to 2.2 TeV/n	PRL 125, 251102 (2020)	10 GeV/n – 2.2 TeV/n
	Iron/Nickel spectrum	10 GeV – 1 PeV	to 2 TeV/n	PRL 125,241101 (2021) PRL 128,131103 (2022)	50 GeV/n – 2 TeV/n 8.8GeV/n – 240GeV/n
	Elemental spectra of primaries	10 GeV – 1 PeV	to 100 TeV	PoS (ICRC2019), 034	10 GeV – 100 TeV
	Ultra-heavy abundances (< z=40)	> 600 MeV/n	> 600 MeV/n	PoS (ICRC2021), 124	> 600 MeV/n
CR propagation	B/C and secondary-to-primary ratios	Up to some TeV/n	to 3.8 TeV/n	PRL 129,251103 (2022)	8.4 GeV/n – 3.8 TeV/n
Nearby electron sources	Electron spectral shape	100 GeV – 20 TeV	to 4.8 TeV	PRL 120, 261102 (2018)	to 4.8 TeV
Dark matter	Signatures in e/γ spectra	100 GeV–20TeV (e) 10 GeV-10TeV (γ)	to 4.8 TeV (e) to 600 GeV (γ)	Proc. of IDM2022 (e) PoS (ICRC2021), 619 (γ)	to 4.8 TeV
Gamma rays	Diffuse & point sources	1 GeV – 10 TeV	1 GeV – 1 TeV	ApJS 238:5 (2018)	1 GeV – 1 TeV
Heliospheric physics	Solar modulation	1 GeV – 10 GeV	1 – 10 GeV	PoS (ICRC2021), 1270	1 – 10 GeV
Gamma-ray transients	GW follow-up and GRB analysis	7 keV–20MeV (CGBM) 1 GeV-1TeV (ECAL)	7 KeV-20MeV	ApJ 933:85 (2022)	7 keV–20MeV (CGBM) > 1 GeV (ECAL)
Space weather	Relativistic electron precipitation	> 1.5 MeV	> 1.5 MeV	Geophys.Res.Lett,49 (2022)	> 1.5 MeV
2023.3.24	日本物理学会2023年春季大会(オンライン) 24pW2-7			19	

CALETの軌道上運用に関するJAXAによる審査経過と今後の計画

時期	A 经過状况	
2015年 11月	チェックアウトフェーズ完了 通常観測開始	
2015年 12月	CALET 定常運用移行審査	
2016年 1月	CALET 定常運用移行審査 デルタ審査	
2017年 11月	CALET 定常運用終了審査 (後期運用(1) への移行が承認された)	
2018年 4月	後期運用(1) へ移行	
2019年 3月	CALET 後期運用(1) 延長審査 (後期運用(2) への以降が承認された。後期運用(1) と併せて、2018年4月~2021年3月の3年間 運 用する)	
2019年 4月	CALET プロジェクト終了審査	
2021年3月	後期運用(2)終了審査/後期運用(3)計画審査会(2024年12月まで運用する)	
2022年3月	後期運用(3)中間確認会	
2023年3月	後期運用(3)中間確認会(その2)	

Cosmic Ray Observations with CALET on the ISS

Overview of CALET Observations

- Direct cosmic ray observations in space at highest energy region
- Cosmic ray observation at world-record level using a large-scale detector at the ISS over a long-term more than 5 years.
- □ Electron observation in 1 GeV 20 TeV is achieved with high energy resolution due to optimization for electron detection
- Search for Dark Matter and Nearby Sources
- Observation of cosmic-ray nuclei will be performed in energy region from 10 GeV to 1 PeV
- ➡ Unravelling the CR acceleration and propagation mechanism
- Detection of transient phenomena in space by stable observations
- ➡ Gamma-ray burst, Solar flare, EM radiation from GW sources etc.

2023.

CALET Instruments

