

Search for gamma-ray spectral lines from Galactic dark matter interactions with CALET

CALETガンマ線データを用いた銀河 暗黒物質由来ラインガンマ線の探索

立命館大理工,早大理工総研^A, NASA/GSFC^B, Louisiana State Univ.^c, 森正樹,赤池陽水^A,小林兼好^A,鳥居祥二^A, N. Cannady^B,川久保雄太^c, M.L. Cherry^c, 他CALETチーム

M. Mori, Y. Alaike, K. Kobayashi, S. Torii, N. Cannady, Y. Kawakubo, M.L. Cherry for the CALET collaboration

日本物理学会2022年秋季大会(岡山理科大学)2022年9月6~8日

Line signals from dark matter interaction

Annihilation: $\chi \chi \rightarrow \gamma \gamma$ etc., $E_{\gamma} = m_{\chi}$

T. Bringmann, C. Weniger/Dark Universe 1 (2012) 194-217

Note that generally the branching ratio into $\gamma\gamma$ suffers suppression (< 10^{-3}).

Ibarra and Tran, PRL 100, 061301 (2008)

Intriguing reports of line signal

130 GeV line?

Fermi-LAT, near GC region

But could be systematic effects: Ex. Ackermann+, PR D 91, 122002 (2015)

43 GeV line?

Liang+, PR D 93, 103525 (2016)

FIG. 1. The stacked spectral energy distribution of 16 galaxy clusters. Red points are the Fermi/LAT data and there might be a linelike structure at the energy of ~43 GeV (i.e., the dotted line).

Fermi-LAT, 16 galaxy clusters

But not confirmed: Ex. Shen+, ApJ 920:1 (2021)

CALET performance for gamma rays

Asaoka et al, Astropart. Phys. 91, 1 (2017)

Cannady et al., ApJS 238, 5 (2018)

• Good energy resolution at high energies thanks to the thick $(30X_0)$ calorimeter!

Skymap (HE trigger, >10 GeV)

October 13, 2015 – September 30, 2020 110,855 gamma-ray candidates

• Exposure is not uniform due to the ISS orbit (inclination 51.6°)

Preliminary

Dark matter distribution

- Dark matter halo is associated with our Galaxy and distributes spherically.
- Typical velocity:
 v ~ O(10⁻³)c

Ref. Ackermann+, PR D91, 122002 (2015)

0.0e+00

R (angular distance from GC)

<3° (NFWc profile)

<16° (Einasto profile)

Regions of interest (ROI)

b [deg]

• Radius of ROI are optimized for each Galactic halo density profile model

• The disk regions ($|/| > 6^{\circ}$ and $|b| < 5^{\circ}$) and point sources are removed from analysis₈

Gamma-ray spectrum

October 13, 2015 – September 30, 2020

R (angular distance from GC)<180° (decay)

Calculation of upper limits 2021Fall

- Monoenergetic lines are assumed.
- Adding the assumed line signals (broadened by a Gaussian distribution with CALET energy resolution) to the observed spectra which raise the reduced χ² for the power-law fit by 3.94 (corresponding to 95% C.L.).

Binning (0.06 decade) for assumed energy differs from data

Calculation of upper limits

Revised

- Monoenergetic lines are assumed.
- Adding the assumed line signals (broadened by a Gaussian distribution with CALET energy resolution) to the observed spectra which raise the reduced χ^2 for the power-law fit using only 5 bins by 3.94 (corresponding to 95% C.L.).

• Binning (10 per decade) is the same as data

Upper limits on line fluxes

- Energy ranges are narrower than previous report since:
 - there should be two bins before and after the assumed bin.
 - we required at least 2 events in each bin.
- Limits are lower because of local fitting to better represent data !?

Gamma-ray line signal from dark matter

Annihilation

$$\left(\frac{\mathrm{d}\Phi}{\mathrm{d}E}\right)_{\mathrm{ann}} = \frac{\langle \sigma v \rangle}{8\pi m_{\mathrm{DM}}^2} \left(\frac{\mathrm{d}N}{\mathrm{d}E}\right)_{\mathrm{ann}} \left[\int_{\mathrm{ROI}} \mathrm{d}\Omega \int_{\mathrm{l.o.s.}} \mathrm{d}s \,\rho(r)^2\right]$$

<**ov>**: velocity-averaged cross section

$$dN/dE = 2\delta(E_{\gamma}-E), E_{\gamma} = m_{DM}$$

• Decay

$$\begin{pmatrix} \frac{d\Phi}{dE} \end{pmatrix}_{dec} = \frac{1}{4\pi\tau_{DM}m_{DM}} \left(\frac{dN}{dE} \right)_{dec} \left[\int_{ROI} d\Omega \int_{1.o.s.} ds \rho(r) \right]$$

$$\tau_{DM}: \text{ lifetime} \\ \frac{dN}{dE} = \delta(E_{\gamma}-E), E_{\gamma} = m_{DM}/2$$

$$\frac{J-\text{factors:}}{\left[\int_{ROI} d\Omega \int_{1.o.s.} ds \rho(r)^2 \right]} \left[\int_{ROI} d\Omega \int_{1.o.s.} ds \rho(r) \right] \text{ halo-model dependent!}$$

Integral of (halo density)² $\rho(\underline{r})^2$ [halo density $\rho(\underline{r})$] along line-of-sight (l.o.s.) over Region-of-Interest (ROI)

Fermi-LAT: Ackermann+, PR D91, 122002 (2015)

H.E.S.S.: Abdallah+, PRL 120, 201101 (2018)

Upper limits on $<\sigma V >$ Proliminary

Thin line: thermal relic (3x10⁻²⁶cm³s⁻¹)

Fermi-LAT: Ackermann+, PR D91, 122002 (2015) DAMPE: Science Bulletin 67, 679 (2022)

Limits on lifetime

Preliminary

Summary

- CALETは2015年の打ち上げ以来ほぼ7年間にわたり、>1 GeV領域の天体ガンマ線を順調に継続して観測している。
- •>10 GeVガンマ線事象を用い、銀河ハロー暗黒 物質からのラインガンマ線信号を探索した。
 - 対消滅については、銀河ハロー分布モデルにより、 探索角度範囲を仮定した。崩壊については全天を探 索した。
 - ライン信号は得られず、m_{DM}=15~400 GeVの範囲 で対消滅の<ov>および崩壊の寿命に対する制限を得た(Preliminary)。