

Observation and Analysis of High-energy Gamma-rays observed with CALET on the ISS

国際宇宙ステーション搭載CALET によるガンマ線の観測と解析

立命館大理工,早大理工研^A, NASA/GSFC^B, Louisiana State Univ.^c, 森正樹,赤池陽水^A,小林兼好^A,鳥居祥二^A, N. Cannady^B,川久保雄太^c, M.L. Cherry^c, 他CALETチーム

M. Mori, Y. Akaike, K. Kobayashi, S. Torii, N. Cannady, Y. Kawakubo, M.L. Cherry for the CALET collaboration

第22回宇宙科学シンポジウム(オンライン開催)2022年1月6~7日

See also PoS (ICRC2021) 619

The CALET collaboration

O. Adriani^{1,2}, Y. Akaike^{3,4}, K. Asano⁵, Y. Asaoka⁵, E. Berti^{1,2}, G. Bigongiari^{6,7}, W.R. Binns⁸, M. Bongi^{1,2}, P. Brogi^{6,7}, A. Bruno^{9.10}, J.H. Buckley⁸, N. Cannady^{11,12,13}, G. Castellini¹⁴, C. Checchia⁶, M.L. Cherry¹⁵, G. Collazuol^{16,17}, K. Ebisawa¹⁸, A.W. Ficklin¹⁵, H. Fuke¹⁸, S. Gonzi^{1,2}, T.G. Guzik¹⁵, T. Hams¹¹, K. Hibino¹⁹, M. Ichimura²⁰, K. Ioka²¹, W. Ishizaki⁵, M.H. Israel⁸, K. Kasahara²², J. Kataoka²³, R. Kataoka²⁴, Y. Katayose²⁵, C. Kato²⁶, N. Kawanaka^{27,28}, Y. Kawakubo¹⁵, K. Kobayashi^{3,4}, K. Kohri²⁹, H.S. Krawczynski⁸, J.F. Krizmanic^{11,12,13}, J. Link^{11,12,13}, P. Maestro^{6,7}, P.S. Marrocchesi^{6,7}, A.M. Messineo^{30,7}, J.W. Mitchell³¹, S. Miyake³², A.A. Moiseev^{33,12,13}, M. Mori³⁴, N. Mori², H.M. Motz³⁵, K. Munakata²⁶, S. Nakahira¹⁸, J. Nishimura¹⁸, G.A. de Nolfo⁹, S. Okuno¹⁹, J.F. Ormes³⁶, N. Ospina^{16,17}, S. Ozawa³⁷, L. Pacini^{1,14,2}, P. Papini², B.F. Rauch⁸, S.B. Ricciarini^{14,2}, K. Sakai^{11,12,13}, T. Sakamoto³⁸, M. Sasaki^{32,12,13}, Y. Shimizu¹⁹, A. Shiomi³⁹, P. Spillantini¹, F. Stolzi^{6,7}, J.P. Wefel¹⁵, K. Yamaoka⁴³, S. Yanagita⁴⁴, A. Yoshida³⁸, K. Yoshida²², and W.V. Zober¹⁵

- 1) University of Florence, Italy
- 2) INFN Florence, Italy
- 3) RISE, Waseda University, Japan
- 4) JEM Utilization Center, JAXA, Japan
- 5) ICRR, University of Tokyo, Japan
- 6) University of Siena, Italy
- 7) INFN Pisa, Italy
- 8) Washington University, St. Louis, USA
- 9) Heliospheric Physics Lab., NASA/GSFC, USA
- 10) Catholic University of America, Washington DC, USA
- 11) University of Maryland, USA
- 12) Astroparticle Physics Lab., NASA/GSFC, USA
- 13) CRESST, NASA/GSFC, USA
- 14) IFAC, CNR, Fiorentino, Italy
- 15) Louisiana State University, USA
- 16) University of Padova, Italy
- 17) INFN Padova, Italy
- 18) ISAS, JAXA, Japan
- 19) Kanagawa University, Japan
- 20) Hirosaki University, Japan
- 21) YITP, Kyoto University, Japan
- 22) Shibaura Institute of Technology, Japan
- 23) Waseda University, Japan

- 24) National Institute of Polar Research, Japan
- 25) Yokohama National University, Japan
- 26) Shinshu University, Japan
- 27) Hakubi Center, Kyoto University, Japan
- 28) Kyoto University, Japan
- 29) IPNS, KEK, Japan
- 30) University of Pisa, Italy
- 31) National Institute of Technology, Japan
- 33) University of Maryland, USA
- 34) Ritsumeikan University, Japan
- 35) GCSE, Waseda University, Japan
- 36) University of Denver, USA
- 37) National Institute of Information and Communications Technology, Japan
- 38) Aoyama Gakuin University
- 39) Niĥon University, Japan
- 40) RIKEN, Japan
- 41) Osaka City Univiersity, Japan
- 42) National Institutes for Quantum and Radiation Science and Technology, Japan
- 43) Nagoya University, Japan
- 44) Ibaraki University, Japan

See Poster: Torii et al. for summary of CALET results

CALET/CAL Detector

Fully active thick calorimeter (30 radiation lengths $[X_0]$) optimized for electron spectrum measurements well into TeV region

See Poster: Kawakubo et al. for CALET/CGBM results

Cannady et al., ApJS 238:5 (2018)

Gamma Ray Event Selection

= Electron Selection Cut + Gamma-ray ID Cut w/ Lower Energy Extension

well contained, regular shower development

larger spread 4

CALET performance for HE trigger

- HE trigger (>10 GeV) is always active in normal observations
- LE-γ trigger (>1 GeV) mode is activated when the geomagnetic latitude is below 20° or following a CALET Gamma-ray Burst Monitor (CGBM) burst trigger

Good energy resolution at high energies thanks to the thick calorimeter!

Skymap (LE-γ trigger, >1 GeV)

• Exposure is not uniform due to the ISS orbit (inclination 51.6°)

Point sources (LE-γ trigger, >1 GeV)

October 13, 2015 – September 30, 2020

Preliminary

• >20 point sources (Crab, Geminga, Vela, CTA102,...) have been detected.

See poster 322 (Cannady et al.) for LE- γ results

• Exposure is not uniform due to the ISS orbit (inclination 51.6°)

Gamma-ray spectra (LE-γ & HE)

Preliminary

October 13, 2015 – September 30, 2020

"On-plane": |*l*| < 80° & |*b*| < 8°, "Off-plane": |*b*| > 8°

• The spectra (Galactic diffuse + point sources) look fairly consistent with those by Fermi-LAT.

Line signals from dark matter interaction

Annihilation:

$$\chi \chi \rightarrow \gamma \gamma$$
 etc., $E_{\gamma} = m_{\chi}$

T. Bringmann, C. Weniger/Dark Universe 1 (2012) 194–217

Note that generally the branching ratio into γγ suffers suppression (< 10⁻³).

Decay:
$$\chi \rightarrow \gamma \nu$$
 etc., $E_{\gamma} = m_{\chi}/2$

Ibarra and Tran, PRL 100, 061301 (2008)

Dark matter distribution

- Dark matter halo is associated with our Galaxy and distributes spherically.
- Typical velocity:
 v ~ O(10⁻³)c

Ref. Ackermann+, PR D91, 122002 (2015)

Regions of interest (ROI)

- Radius of ROI are optimized for each Galactic halo density profile model
- The disk regions ($|/| > 6^\circ$ and $|b| < 5^\circ$) and point sources are removed from analysis.

Ackermann+, PR D91, 122002 (2015)

Dark matter density profile

- Normalized to be 0.4 GeV cm⁻³ at 8.5 kpc from the Galactic center.
- Different densities are predicted around the Galactic center.

• We expect larger signals toward the Galactic center for cuspy profiles.

Calculation of upper limits

- Monoenergetic lines are assumed.
- Adding the assumed line signals (broadened by a Gaussian distribution with CALET energy resolution) to the observed spectra which raise the reduced χ² for the power-law fit by 3.94 (corresponding to 95% C.L.).

Upper limits as a function of energy

Preliminary

- Upper limits are mostly determined by event statistics.
- Systematic errors are not taken into account (under study).

Gamma-ray line signal from dark matter

Annihilation

$$\left(\frac{\mathrm{d}\Phi}{\mathrm{d}E}\right)_{\mathrm{ann}} = \frac{\langle \sigma v \rangle}{8\pi m_{\mathrm{DM}}^2} \left(\frac{\mathrm{d}N}{\mathrm{d}E}\right)_{\mathrm{ann}} \left[\int_{\mathrm{ROI}} \mathrm{d}\Omega \int_{\mathrm{l.o.s.}} \mathrm{d}s \,\rho(r)^2\right]$$

<**ov>**: velocity-averaged cross section

$$dN/dE = 2\delta(E_{\gamma}-E), E_{\gamma} = m_{DM}$$

• Decay

$$\begin{pmatrix} \frac{d\Phi}{dE} \end{pmatrix}_{dec} = \frac{1}{4\pi\tau_{DM}m_{DM}} \begin{pmatrix} \frac{dN}{dE} \end{pmatrix}_{dec} \left[\int_{ROI} d\Omega \int_{1.o.s.} ds \rho(r) \right]$$

$$\tau_{DM}: \text{ lifetime}$$

$$dN/dE = \delta(E_{\gamma}-E), E_{\gamma} = m_{DM}/2$$

$$J\text{-factors:} \left[\int_{ROI} d\Omega \int_{1.o.s.} ds \rho(r)^{2} \right], \left[\int_{ROI} d\Omega \int_{1.o.s.} ds \rho(r) \right] \text{ halo-model dependent!}$$

Integral of (halo density)² $\rho(\underline{r})^2$ [halo density $\rho(\underline{r})$] along line-of-sight (l.o.s.) over Region-of-Interest (ROI)

Fermi-LAT: Ackermann+, PR D91, 122002 (2015)

H.E.S.S.: Abdallah+, PRL 120, 201101 (2018)

Thin line: thermal relic (3x10⁻²⁶cm³s⁻¹)

Preliminary: statistical error only

Upper limits on $\langle \sigma v \rangle$

Fermi-LAT: Ackermann+, PR D91, 122002 (2015)

Upper limits on lifetime

Preliminary: statistical error only

For R180, limits are almost independent of the profile models.

- Good energy resolution of CALET enables sensitive search at high energies, but limited by the statistics of observed gamma rays.
- Thus for larger ROI, we may set better upper limits.

Summary

- Gamma-ray events above 10 GeV observed during five years of operation of the CALET detector have been analyzed to search for possible line signals.
- Good energy resolution of CALET enables sensitive search in the high energy region.
- We found no hint of line signals and gave upper limits on parameters of the DM annihilation and decay models for $m_{\rm DM}$ = 10 ~ 500 GeV.
- For annihilation, $\langle \sigma v \rangle_{\gamma\gamma} \langle 10^{-28} 10^{-25} \text{cm}^{-3} \text{s}^{-1}$ depending on m_{DM} and the Galactic halo density models.
- For decay, lifetime limits reach $\tau_{\rm DM} > 10^{30}$ s ($m_{\rm DM} > 100$ GeV) and almost model-independent.
- We are now studying possible systematic errors in our limits.

See also PoS (ICRC2021) 619