Measurement of Cosmic-ray secondary-to-primary ratios with CALET on the International Space Station

Yosui Akaike, Paolo Maestro for the CALET Collaboration Waseda University, Siena University/INFN-Pisa

CALET measures energy spectra of nuclei from proton to Iron

- Energy spectra of proton, C and O indicate the spectral hardening at a few 100 GeV/n, while less in iron spectrum.
- Measurement of secondary CRs can constrain the theoretical models

Boron spectrum and B/C ratio will be presented in this presentation

Instrument of CALET

A 30-radiation length deep calorimeter designed to detect electrons and gammas to 20 TeV and cosmic rays up to 1 PeV

Since the start of operation on the ISS in October 2015, CALET has been accumulating scientific data without any major interruption

Data analysis

Analyzed Flight Data

1,815 days (Oct. 13, 2015 – Sep. 30, 2020) T_{live} =3.69 x 10⁴ hours

Analysis procedure

- Field of view cut Remove shielded region by ISS structures
- High energy trigger + offline shower trigger
 E>10GeV
- Tracking with IMC
- Acceptance cut CHD, TASC top and bottom layers
- Charge identification Charge consistency among CHD and IMC layer Track width selection
- Estimate efficiency and background
- Apply energy unfolding
- Calculate flux and the ratio

An example of Boron candidate (X-Z view) $E_{TASC} = 475.8 \text{ GeV}$

Event selection

Major possible background source is events interacting in CHD or upper surface materials

Charge consistency

with each CHD and upper 4 IMC layers

- $1/1.10 < Z_{CHDY}/Z_{CHDX} < 1.10$
- $1/1.15 < Z_{CHD}/Z_{IMC} < 1.15$
- $|Z_{IMC12} Z_{IMC34}| < 1$
- $|(Z_{IMC12} + Z_{IMC34})/2 Z_{CHD}| < 1$

Track width

Track width of the backgrounds spread wider

$$B_{\text{IMCi}} = \left(\sum_{j=-k}^{k} N_{\text{IMCi},j} - \sum_{j=-1}^{1} N_{\text{IMCi},j}\right) \frac{1}{Z_{\text{IMCi}}^2}$$

Sum of 7 SciFis Sum of 3 SciFis

37th International Cosmic Ray Conference, Berlin, Germany(online) 12-23 July 2021

Efficiency and background for Boron

Efficiency is evaluated by MC simulations

- Isotope abundance ratio is assumed as ¹⁰B : ¹¹B = 30 : 70
- The difference of the efficiency between pure ¹⁰B and ¹¹B is 1%

Background is evaluated by MC simulations

- the main source is carbon
- total background is at most 4%

Energy measurement and unfolding

- Iterative Bayesian unfolding
 - Initial assumed spectrum: f(E)=A x E^{-2.60}
 A: normalization constant
 - from charge distribution in CHD
 - Response function is made by MC simulation
 ΔE [GeV] vs E₀ [GeV]

- Beam test at CERN-SPS
 - Accuracy of the energy measurement of MC simulation is tested with ion fragments beam (Z/A=2) at 13, 19, 150 GeV/n
 - The energy response derived from MC simulations was tuned using the beam test results

Response matrix of Boron

Energy distribution with beam test

Statistics and systematic uncertainties

Systematic uncertainty sources Energy dependent:

- trigger efficiency
- charge identification
- background subtraction
- energy unfolding
- MC model

(EPICS:DPMJET3 and Geant4:FTFP-BERT)

Energy independent

- live time
- long-term stability

Energy scale

- beam test calibration

A CONTROL OF A CON

Preliminary energy spectrum of Boron

CALET preliminary result is consistent with PAMELA, but lower than AMS-02

37th International Cosmic Ray Conference, Berlin, Germany(online) 12-23 July 2021

Preliminary energy spectrum of Boron

CALET preliminary result is consistent with PAMELA, but lower than AMS-02

^{37&}lt;sup>th</sup> International Cosmic Ray Conference, Berlin, Germany(online) 12-23 July 2021

Preliminary result of B/C ratio

CALET preliminary result is well consistent with CREAM-1, PAMELA and AMS-02

The B/C ratio is fitted by a single power law function: $(B/C) = AE^{\delta}$ $\delta = -0.344 \pm 0.012 (E > 20 \text{ GeV/n}), \quad \chi^2/\text{ndf} = 5.6/15$

- CALET was launched in August 2015 and is successfully carrying out observations of CR nuclei with stable operations.
- Preliminary result of boron spectrum is obtained from 16 GeV/n to 2.2 TeV/n.
- Preliminary result of B/C ratio is presented from 16 GeV/n to 2.2 TeV/n.
 single power law fitting: E^δ gives δ = -0.344 ± 0.012 (E>20GeV/n)
- CALET has capabilities to measure not only the B/C ratio, but also sub-Fe/Fe ratio, and the analysis is ongoing
- Further observations until December 2024 are approved. We will collect higher statistics and achieve a further reduction of the systematic errors.