CALETによる10GeV/nから2.2TeV/nの炭素と酸素の エネルギースペクトル観測結果

早大理工総研^B, Siena Univ./INFN Pisa^A, 東大宇宙線^B, 芝浦工大^C, 弘前大理工^D

赤池陽水, Paolo Maestro^A, 鳥居祥二,浅岡陽一^B,笠原克昌^c, 市村雅一^D, Pier S. Marrocchesi^A, 他 CALET チーム

JPS Annual 76th Meeting, March 13, 2021

CALETによる10GeV/nから2.2TeV/nの炭素と酸素の エネルギースペクトル観測結果

O. Adriani et al., (CALET Collaboration), Phys. Rev. Lett. **125**, 251102 (2020) "Direct Measurement of the Cosmic-Ray Carbon and Oxygen Spectra from 10 GeV/n to 2.2TeV/n with the Calorimetric Electron Telescope on the International Space Station"

早大理工総研^B, Siena Univ./INFN Pisa^A, 東大宇宙線^B, 芝浦工大^C, 弘前大理工^D

赤池陽水, Paolo Maestro^A, 鳥居祥二,浅岡陽一^B,笠原克昌^c, 市村雅一^D, Pier S. Marrocchesi^A, 他 CALET チーム

Energy Spectra of Galactic Cosmic Rays

"Standard" model of galactic cosmic rays

- Diffusive shock acceleration via supernovae remnant
- Diffusion propagation in our Galaxy
 - Same power law spectra for all primary cosmic rays (dN/dE $\propto E^{-\gamma-\delta}$)
 - Acceleration limit proportional to the charge (Ec \sim 100ZTeV), etc.

Unexpected observation results

• Spectra of proton and nuclei break at R~300GV

JPS Annual 76th Meeting, March 13, 2021

Instrument of CALET

A 30-radiation length deep calorimeter designed to detect electrons and gammas to 20 TeV and cosmic rays up to 1 PeV

JPS Annual 76th Meeting, March 13, 2021

Energy measurement with CALET

Selection for C, O candidate events

Analyzed Flight Data

1,480 days (Oct. 13, 2015 – Oct. 31, 2019) *T*_{live}=3.00 x 10⁴ hours

Analysis procedure

- HE + offline shower trigger 50MIP in IMC-X/Y78, 100MIP in TASC-X1
- Tracking with IMC
- Acceptance cut CHD, TASC top (2cm from edge) and bottom layers
- Charge identification with CHD and IMC
- Background estimation
- Energy measurement and unfolding
- Flux calculation

<u>MC data</u>

- EPICS v9.22, Cosmos8.02, DPMJET-III
- proton Ni in 1 GeV 1 PeV

Digitization of signals in simulation are modelled and tuned by beam test results and flight data; quenching, noise and saturation.

An example of Carbon event from Flight data

Study of trigger efficiency

- High-Energy Trigger (HET), which is the primary CALET mission trigger, is the coincidence of signals in last two IMC layers and top TASC layer
- Low-Energy Trigger (LET) is the same trigger logic as HET, but lower threshold allowing to trigger also penetrating particles of C and O

HET is modelled in simulation: good agreement between MC and flight data

JPS Annual 76th Meeting, March 13, 2021

Charge identification

Event selection

- Offline trigger confirmation
 - N_{IMC78}>50MIP, N_{TASCX1}>100MIP
- TASC lateral leakage fraction
 - E_{TASCX1} < 0.4 E_{TASC}
- Remove late-interacting events
 - E_{TASC-bottom} < 0.4 E_{TASC}
- Charge consistency with CHD and IMCs
 - $|Z_{CHD} Z| < 0.4e \& |Z_{IMC} Z| < 2\sigma_{IMC}$
- $\rightarrow 6.15 \ x \ 10^5$ events for Carbon, and 1.05 $x \ 10^6$ events for Oxygen are selected

Charge distribution of CHD compared with MC

JPS Annual 76th Meeting, March 13, 2021

Energy unfolding

Characteristics of nuclei measurements with CALET calorimeter:

- thickness: 30 X_0 for electron, 1.3 λ for proton
- $\sigma(E)/E$: 2% for electron, 30% for nuclei
 - ➡ Need energy unfolding for nuclei to obtain primary energy spectrum

Iterative Bayesian unfolding

- Initial assuming spectra: $f(E)=A \times E^{-2.60}$
 - A is normalized by charge distribution in CHD
- Response function:

 E_{TASC} [GeV] (deposit energy in calorimeter) vs E_0 [GeV] (primary energy)

Sources of systematic uncertainty

- Offline trigger threshold: 100-150MIP at TASC-X1
- Charge identification:
 0.35e 0.45e for CHD
 1.75σ 2.2σ for IMC
- Energy scale : ±2% from beam test
- Beam test configuration
- Energy unfolding : spectral index in 2.5 – 2.9
- MC model : EPICS vs FLUKA
- Live time
- Long-term stability

Sources of systematic uncertainty

- Offline trigger threshold: 100-150MIP at TASC-X1
- Charge identification:
 0.35e 0.45e for CHD
 1.75σ 2.2σ for IMC
- Energy scale : ±2% from beam test
- Beam test configuration
- Energy unfolding : spectral index in 2.5 – 2.9
- MC model : EPICS vs FLUKA
- Live time
- Long-term stability

Energy Spectra of Carbon and Oxygen

Carbon and Oxygen Spectra

Comparison with AMS-02

JPS Annual 76th Meeting, March 13, 2021

C/O flux ratio

The carbon to oxygen flux ratio is well fitted to a constant value above 25 GeV/n, indicating that the two fluxes have the same energy dependence

- CALET has measured the energy spectra of carbon and oxygen from 10 GeV/n to 2.2 TeV/n, and the results was published from <u>PRL 125, 251102 (2020)</u>
 - 6.154x10⁵ events for carbon and 1.047 x 10⁶ events for oxygen are selected in the data during 1,480 days of operation
 - Our observations allow to exclude a single power law spectrum for C and O by more than 3σ
 - $C: \gamma = -2.663 \pm 0.014$, $E_0 = 215 \pm 54 \text{ GeV/n}$, $\Delta \gamma = 0.166 \pm 0.042$
 - O: $\gamma = -2.637 \pm 0.009$, $E_0 = 264 \pm 53 \text{ GeV/n}$, $\Delta \gamma = 0.158 \pm 0.053$
 - The spectra of C and O show the same energy dependence above 25 GeV/n
 - The spectral hardening is consistent with that measured by AMS-02, but the absolute normalization of the flux is about 27% lower, though in agreement with observations from previous experiments including the PAMELA spectrometer
- To understand the spectral hardening, the measurements of the spectra of heavier nuclei such as Fe and the secondary-to-primary ratio such as B/C would be important, and the analysis is ongoing