CALETによる5年間の 軌道上観測の成果と展望

CALET Calorimetric Electron

Telescope on the International Space Station

日本物理学会第76回年次大会 2021年3月13日

鳥居 祥二 早稲田大学 理工学術院総合研究所 他 CALETチーム

13aW3-5

CALET Payload

Kounotori (HTV) 5

on Aug. 25th, 2015

- Mass: 612.8 kg
- JEM Standard Payload Size: 1850mm(L) × 800mm(W) × 1000mm(H)
- Power Consumption: 507 W (max) ٠
- **Telemetry:**

Medium 600 kbps (6.5GB/day) / Low 50 kbps

JEM/Port #9

CALET Overview

 Electron observation in 1GeV-20TeV Design optimized for electron detection: 	Main CALET scientific objectives	Detector performance
- Space weather 0.2° for gamma-rays > 10 GeV	 Electron observation in 1GeV-20TeV Design optimized for electron detection: high energy resolution and large e/p separation power + e.m. shower containment Search for Dark Matter and Nearby Sources Observation of cosmic-rays in 10 GeV-1 PeV Unraveling the CR acceleration and propagation mechanism(s) Detection of transient phenomena in space: Gamma-ray burst Golar modulation Space weather 	 Geometrical Factor: 1040 cm² sr for electrons, light nuclei 1000 cm² sr for gamma-rays 4000 cm²sr for ultra-heavy nuclei ΔE/E: ~2 % (>10GeV) for e, γ ~30-35% for protons, nuclei e/p separation: ~10⁵ Charge resolution: 0.15-3 e (p-Fe) Angular resolution: 0.2° for gamma-rays > 10 GeV

Scientific Objectives	Observation Targets	Energy Range
CR Origin and Acceleration	Electron spectrum Individual spectra of elements from proton to Fe Ultra Heavy Ions (26 <z≤40) Gamma-rays (Diffuse + Point sources)</z≤40) 	1GeV - 20 TeV 10 GeV - 1000 TeV > 600 MeV/n 1 GeV - 1 TeV
Galactic CR Propagation	B/C and sub-Fe/Fe ratios	Up to some TeV/n
Nearby CR Sources	Electron spectrum	100 GeV - 20 TeV
Dark Matter	Signatures in electron/gamma-ray spectra	100 GeV - 20 TeV
Solar Physics	Electron flux (1GeV-10GeV)	< 10 GeV
Gamma-ray Transients	Gamma-rays and X-rays	7 keV - 20 MeV

CALET Capability

Unique features of CALET

- A dedicated charge detector + multiple dE/dx track sampling in the IMC allow to identify individual nuclear species (Δz~0.15-0.3 e).
- □ Thick(~30 X₀), fully active calorimeter allows measurements well into the TeV energy region with excellent energy resolution (~2-3%)
- High granularity imaging calorimeter to accurately identify the arrival direction of incident particles (~0.2°) and the starting point of electromagnetic showers.
- Combined, they powerfully separate electrons from the abundant protons: contamination is much less than 10 % up to the TeV region.

Examples of Observed Events

Proton, E_{TASC} =2.89 TeV

Event Display: Electron Candidate (>100 GeV)

Electron, E=3.05 TeV

Observation by High Energy Trigger over 1966 days : Oct.13, 2015 – Feb. 28, 2021 Over five-years observations have already been achieved !!

- The exposure, SΩT, has reached to ~174 m² sr day for electron observations by continuous and stable operations.
- □ Event number of HE triggered events (>10 GeV) is ~1.27 billion with a live time fraction of about 86 %. Total event number triggered over 1 GeV is ~2.71 billion.

Accumulated observation time (live, dead)

Energy deposit (in TASC) spectrum: 1 GeV-1 PeV

Phys. Rev. Lett. 120, 261102 (2018)

CALET All-Electron Spectrum : sub-TeV to TeV region

Direct Measurement of Proton Spectrum

Phys. Rev. Lett. 122, 181102 (2019) Highlighted as "Editor's Suggestion"

日本物理学会第76回年次大会 13aW3-5

Proton Spectrum: Comparison between Recent Direct Measurements

Phys. Rev. Lett. 122, 181102 (2019) Highlighted as "Editor's Suggestion"

Proton Spectrum: Next Challenge and Current Status

Using ~60 months of CALET UH-trigger data with ~4 × the geometry factor of the standard nuclei trigger (0.44 m² sr).

Rigidity dependence of number of the observed UH events with Z≥30

Rigidity	2.0 GV	2.5 GV	3.0 GV	3.5 GV	4.0 GV
Z≥30	8,550	6,231	4,593	3,669	3,122

- CALET and SuperTIGER cover similar energy ranges with different systematics
- Improved charge assignment and data selections can improve agreement

2021/3/13

t (deg)

25

-25

-50

13aW3-9 (Ko) 13aW3-10 (Miyake)

- Since the start of observations in October, 2015, a steady increase in the 1-10 GeV all-electron flux has been observed up to the present time.
- Especially, the flux in the most recent two years has reached the maximum flux observed with PAMELA during the last solar minimum period.

CALET: Summary and Future Prospects

- CALET was successfully launched on Aug. 19th, 2015. The observation campaign started on Oct. 13th, 2015. Excellent performance and remarkable stability of the instrument were confirmed.
- As of Feb. 28, 2021, total observation time is 1966 days with live time fraction close to 86%. Nearly 2.7 billion events collected with low (> 1 GeV) & high (> 10 GeV) energy triggers.
- Accurate calibrations have been performed with non-interacting p & He events + linearity in the energy measurements established up to 10⁶ MIPs.
- □ Following results have been obtained by now.
- Measurement of electron + positron spectrum in 11 GeV- 4.8 TeV.
- Direct measurement of proton spectrum in 50 GeV- 10 TeV energy range, and of Carbon and Oxygen spectra in 10 GeV/n -2.2 TeV/n: Spectral hardening observed above a few hundred GeV/n.
- Preliminary analysis of primary cosmic-ray elements up to Iron.
- Study of diffuse and point sources (+ Sun) of gamma-rays.
- Follow-up observations of GW events in X-ray and gamma-ray bands.
- Continuous observations of gamma-ray bursts, solar modulation and REP events are successfully caried out.

 CALET observation has been carried out over 5 years, and is approved to be extended for 4 years more until the end of 2024 at the JAXA review held on March 12, 2021.

* This work is partially supported by JSPS KAKENHI Kiban (S) Grant Number 19H05608 (2019-2023FY).

BACKUP

Overview of CALET Payload

All Electron Spectrum: Comparison between Direct & Ground Measurements

- Search for Dark Matter signature in the electron spectrum structure
 - Detection of unknown primary source of electron and positron: Pulsar(s) or Dark Matter ?

- Investigation of CR nearby sources by electron observations at the TeV region
 - Direct detection of nearby sources
 - Acceleration limit and escape process from SNR

Direct Measurement of Proton Spectrum by CALET

Plasma Waves Causing Relativistic Electron Precipitation Events at International Space Station: Lessons From Conjunction Observations With Arase Satellite

Ryuho Kataoka, Yoichi Asaoka, Shoji Torii, Satoshi Nakahira, Haruka Ueno, Shoko Miyake , Yoshizumi Miyoshi , Satoshi Kurita, Masafumi Shoji ,Yoshiya Kasahara8 , Mitsunori Ozaki , Shoya Matsuda , Ayako Matsuoka ,Yasumasa Kasaba , Iku Shinohara , Keisuke Hosokawa, Herbert Akihito Uchida , Kiyoka Murase, and Yoshimasa Tanaka

JGR Space Physics, 125, e2020JA027875

- a. EMIC Event on 21 August 2017
- b. Chorus Event on 24 April 2017
- c. Electrostatic Whistler Event on 26 October 2017

Figure 2. High time cadence count rate data of CHD-X (black) and CHD-Y (red) at 0.1 s time cadence; (a) quasiperiodic variation associated with EMIC waves, (b) irregular variation associated with chorus waves, and (c) smooth and quasiperiodic variation associated with electrostatic whistler waves.