CALETによる5年間の 軌道上観測の最新成果

鳥居祥二 早大理工総研 他CALET国際研究チー

CALET

15aSN-1

2 EI

CALET Payload

Launched on Aug. 19th, 2015 by the Japanese H2-B rocket

Emplaced on JEM-EF port #9 on Aug. 25th, 2015 (JEM-EF: Japanese Experiment Module-Exposed Facility)

- Mass: 612.8 kg
- JEM Standard Payload Size: 1850mm(L) × 800mm(W) × 1000mm(H)
- Power Consumption: 507 W (max)
- Telemetry:

Medium 600 kbps (6.5GB/day) / Low 50 kbps

CALET Instrument

Geometrical Factor: ~ 1,040 cm²sr (for electrons)

Unique features of CALET

 \Box A dedicated charge detector + multiple dE/dx track sampling in the IMC allow to identify individual nuclear species (Δ Z~0.15-0.3 e).

□High granularity imaging pre-shower calorimeter accurately identify the arrival direction of incident particles (~0.1°) and the starting point of showers.

DThick(~30 X_0), fully active calorimeter allows measurements well into the TeV energy region with excellent energy resolution (~2%)

>Combined, they powerfully separate electrons from the abundant protons: contamination is much less than 10 % up to the TeV region.

Simulated Shower Profile

Examples of Event Display (Flight Data)

Electron, E=3.05 TeV

fully contained even at 3TeV

Proton, $\Delta E=2.89$ TeV X-Z View Y-Z View

clear difference from electron shower in TASC

Fe, $\Delta E=9.3$ TeV

Gamma-ray, E=44.3 GeV

energy deposit in CHD consistent with Fe

no energy deposit before pair production

MIP

Detector performance	Main CALET scientific objectives	
 Geometrical Factor: 1040 cm² sr for electrons, light nuclei 1000 cm² sr for gamma-rays 4000 cm²sr for ultra-heavy nuclei ΔE/E: ~2 % (>10GeV) for e , γ ~30-35% for protons, nuclei e/p separation: ~10⁵ Charge resolution: 0.15-3 e (p-Fe) Angular resolution: 0.2° for gamma-rays > ~50 GeV 	 Electron observation in 1GeV-20TeV Design optimized for electron detection: high energy resolution and large e/p separation power + e.m. shower containment Search for Dark Matter and Nearby Sources Observation of cosmic-rays in 10 GeV-1 PeV Unraveling the CR acceleration and propagation mechanism(s) Detection of transient phenomena in space: Gamma-ray burst GW e.m. counterparts Solar modulation Space weather 	

Scientific Objectives	Observation Targets	Energy Range
CR Origin and Acceleration	Electron spectrum Individual spectra of elements from proton to Fe Ultra Heavy Ions (26 <z≤40) Gamma-rays (Diffuse + Point sources)</z≤40) 	1GeV - 20 TeV 10 GeV - 1000 TeV > 600 MeV/n 1 GeV - 1 TeV
Galactic CR Propagation	B/C and sub-Fe/Fe ratios	Up to some TeV/n
Nearby CR Sources	Electron spectrum	100 GeV - 20 TeV
Dark Matter	Signatures in electron/gamma-ray spectra	100 GeV - 20 TeV
Solar Physics	Electron flux (1GeV-10GeV)	< 10 GeV
Gamma-ray Transients	Gamma-rays and X-rays	7 keV - 20 MeV
	JPS2020 Fall Meeting (online), Sep. 15, 2020	

Observation by High Energy Trigger for 1754 day : Oct. 13, 2015 – Jul. 31, 2020 Nearly 5-year observations has been achieved !!

- \Box The exposure, SQT, has reached to ~156 m² sr day for electron observations by continuous and stable operations.
- □ Event number of HE triggered events (>10 GeV) is ~1.13 billion with a live time fraction of about 85 %. Total event number triggered over 1 GeV is ~2.43 billion.

All Electron Spectrum:

Comparison between Recent Direct Measurements

CALET Observations: Oct. 13, 2015 - Nov. 30, 2017 (for 780 days) 250 E^{3.0} flux[m⁻²sr⁻¹s⁻¹GeV^{2.0}] CALET's spectrum is consistent with AMS-02 below 1 TeV. 1. There are two group of measurements: 2. AMS-02+CALET vs Fermi-LAT+DAMPE, indicating the 200 presence of unknown systematic errors. 150 Current statistics: 100 x 2.3 (~400 events,>1TeV) CALET 2018 PRL 120, 261102 (2018) 50 3. CALET observes flux suppression consistent with DAMPE within errors above 1TeV. No peak-like structure at 1.4 TeV in CALET data, 4. irrespective of energy binning. 10³ 10² 10 Energy [GeV JPS2020 Fall Meeting (online), Sep. 15, 2020

7

Proton Spectrum: Comparison between Recent Direct Measurements

CALET Observations: Oct.13,2015- Aug.31,2018 (for 1,056 days)

JPS2020 Fall Meeting (online), Sep. 15, 2020

[deg]

a

CALET Gamma-ray Sky (>1GeV)

-100

Current Topics: Solar atmospheric gamma-rays

CALET: Summary and Future Prospects

- □ As of Jul. 31, 2020, CALET has successfully carried out 1754-day observations with live time fraction to total time close to 85%. Nearly 2.4 billion events collected with low (> 1 GeV) + high energy (> 10 GeV) triggers.
- Accurate calibrations have been performed with non-interacting p & He events + linearity in the energy measurements established up to 1 PeV.
- □ Following results have been achieved by now.
 - Measurement of electron + positron spectrum in 11 GeV 4.8 TeV.
 - Direct measurement of proton spectrum in 50 GeV 10 TeV energy range, spectral hardening observed above a few hundred GeV.
 - Preliminary analysis of primary elements up to Fe.
 - Study on solar modulation over ~5 years.
 - Observation of diffuse and point sources (+ Sun) of gamma-rays.
 - Gamma-ray burst detections and follow-up observations of GW events in X-ray and gamma-ray bands.
 15aSN-6
- □ CALET mission is planed by March 2021 over 5.7 years after launch, and is expected by FY 2024 with the approval by reviewing of the project status.

*) This work is partially supported by JSPS KAKENHI Kiban (S) Grant Number 19H05608 (2019-2023).

JPS2020 Fall Meeting (online), Sep. 15, 2020

JAPAN

15aSN-4

CALET 研究成果報告会@早稲田大学 20

2019年12月15日

CALETの開発、運用に貢献して いただいた、JAXA、メーカー、 研究者の皆様に感謝します!!!

JPS2020 Fall Meeting (online), Sep. 15, 2020

BACKUP

JPS2020 Fall Meeting (online), Sep. 15, 2020

All Electron Spectrum: Comparison between Direct & Ground Measurements

JPS2020 Fall Meeting (online), Sep. 15, 2020

- Search for Dark Matter signature in the electron spectrum structure
 - Detection of unknown primary source of electron and positron: Pulsar(s) or Dark Matter ?

- Investigation of CR nearby sources by electron observations at the TeV region
 - Direct detection of nearby sources
 - Acceleration limit and escape process from SNR

Direct Measurement of Proton Spectrum by CALET

