CALET Payload - Mass: 612.8 kg JEM Standard Payload - Size: 1850mm (L) × 800mm (W) × 1000mm (H) - Power: 507 W (max) - Telemetry: Medium 600 kbps (6.5GB/day) #### Cosmic Ray Observations aboard the ISS and CALET program #### Main CALET science objectives: - → Electron observation in 1 GeV 20 TeV range. Design optimized for electron detection: high energy resolution and large e/p separation power + e.m. shower containment. Detailed study of spectral shape. Search for Dark Matter and Nearby Sources - Observation of cosmic-ray nuclei in the energy region from 10 GeV to 1 PeV. Unravelling the CR acceleration and propagation mechanism(s) - → Detection of transient phenomena in space Gamma-ray bursts, e.m. GW counterparts, Solar flares, Space Weather | Scientific Objectives | Observation Targets | Energy Range | |----------------------------|--|--| | CR Origin and Acceleration | Electron spectrum Individual spectra of elements from proton to Fe Ultra Heavy Ions ($26 < Z \le 40$) Gamma-rays (Diffuse + Point sources) | 1GeV - 20 TeV
10 GeV - 1000 TeV
> 600 MeV/n
1 GeV - 1 TeV | | Galactic CR Propagation | B/C and sub-Fe/Fe ratios | Up to some TeV/n | | Nearby CR Sources | Electron spectrum | 100 GeV - 20 TeV | | Dark Matter | Signatures in electron/gamma-ray spectra | 100 GeV - 20 TeV | | Solar Physics | Electron flux (1GeV-10GeV) | < 10 GeV | | Gamma-ray Transients | Gamma-rays and X-rays | 7 keV - 20 MeV | ## CALET instrument in a nutshell Field of view: ~ 45 degrees (from the zenith) Geometrical Factor: ~ 1,040 cm²sr (for electrons) #### **CALET:** a unique set of key instruments - □ CHD: a dedicated charge detector + multiple dE/dx sampling in the IMC allow the identification of individual nuclear species (charge resolution ~0.15-0.3 e). - □ IMC: high granularity (1mm) imaging pre-shower calorimeter to accurately reconstruct the arrival direction of incident particles (~0.1°) and the starting point of electro-magnetic showers. Scifi + Tungsten absorbers: 3 X₀ (=0.2 X₀ x 5 + 1.0 X₀ x 2) - TASC: thick (27 X₀) homogeneous PWO calorimeter allowing to extend electron measurements into the TeV energy region with ~2% energy resolution. - □ Combined (30 X_{0} , 1.2 λ_{I}) they separate electrons from the abundant protons (rejection > 10^{5} .). # **Examples of Observed Events** ## Proton, ΔE=2.89 TeV Multi-prong background event (interaction in CHD) Iron, ΔE=9.3 TeV # **CALET Instrument overview** ## **Energy Measurement** in a wide dynamic range 1-10⁶ MIPs Pier S. Marrocchesi # Observations with High Energy Trigger (>10GeV) Observation with High Energy Trigger for 1327 days: Oct.13, 2015 – May 31, 2019 - □ The exposure, SΩT, has reached ~116 m² sr day for electron observations under continuous and stable operations. - ☐ Total number of triggered events is ~1.8 billion with a live time fraction of ~84 %. #### Accumulated observation time (live, dead) #### Distribution of deposit energies (ΔE) in TASC #### Position and Temperature Calibration + Long-term Stability ### Energy Resolution for Electrons by On-orbit Calibration #### Electron / Proton Discrimination [Y.Asaoka, COSPAR 2108 E1.5-0023-18] #### **Simple Two Parameter Cut** **F**_E: Energy fraction of the bottom layer sum to the whole energy deposit sum in TASC R_E: Lateral spread of energy deposit in TASC-X1 Cut Parameter K is defined as follows: $$K = log_{10}(F_E) + 0.5 R_E (/cm)$$ #### **Boosted Decision Trees (BDT)** In addition to the two parameters on the left, TASC and IMC shower profile fits are used as discriminating variables #### **BDT Response using 9 parameters** Pier S. Marrocchesi ## Charge Identification of Nuclei with CHD and IMC Single element selection for p, He and light nuclei is achieved by CHD+IMC charge analysis. Deviation from Z² response is corrected both in CHD and IMC using a core + halo ionization model (Voltz) #### Combined CHD-IMC proton-Helium charge-ID # Direct measurement of proton spectrum by CALET # Spectral Behavior of Proton Flux - Subranges of 50—500GeV, 1-10TeV can be fitted with single power law function, but not the whole range (significance > 3σ). - Progressive hardening up to the TeV region was observed. - "smoothly broken power-law fit" gives power law index consistent with AMS-02 in the low energy region, but shows larger index change and higher break energy than AMS-02. # Systematic Uncertainties (proton spectrum) Phys. Rev. Lett. 122, 181102 (2019) Study flux stability via scan of parameter space 4.1% #### **Energy independent** (normalization) - Live time - Radiation environment - Long-term stability - Quality cuts #### **Energy dependent** - MC model dependence - Track consistency with TASC energy deposits - Shower development requirement in IMC - Charge identification - Energy unfolding - Beam test related uncertainties #### **Energy scale uncertainty** - beam test with < 400 GeV protons - beam test with 150 GeV/n Ar fragments - ground test with laser (response linearity) 36th ICRC July 30, 2019 - Madison Pier S. Marrocchesi # Direct measurements of proton spectrum to date 15 # **CALET: Summary and Future Prospects** ## **CALET Collaboration Team** O. Adriani²⁵, Y. Akaike², K. Asano⁷, Y. Asaoka^{9,31}, M.G. Bagliesi²⁹, E. Berti²⁵, G. Bigongiari²⁹, W.R. Binns³², S. Bonechi²⁹, M. Bongi²⁵, P. Brogi²⁹, A. Bruno¹⁵, J.H. Buckley³², N. Cannady¹³, G. Castellini²⁵, C. Checchia²⁶, M.L. Cherry¹³, G. Collazuol²⁶, V. Di Felice²⁸, K. Ebisawa⁸, H. Fuke⁸, T.G. Guzik¹³, T. Hams³, N. Hasebe³¹, K. Hibino¹⁰, M. Ichimura⁴, K. Ioka³⁴, W. Ishizaki⁷, M.H. Israel³², K. Kasahara³¹, J. Kataoka³¹, R. Kataoka¹⁷, Y. Katayose³³, C. Kato²³, Y.Kawakubo¹, N. Kawanaka³⁰, K. Kohri ¹², H.S. Krawczynski³², J.F. Krizmanic², T. Lomtadze²⁷, P. Maestro²⁹, P.S. Marrocchesi²⁹, A.M. Messineo²⁷, J.W. Mitchell¹⁵, S. Miyake⁵, A.A. Moiseev³, K. Mori^{9,31}, M. Mori²¹, N. Mori²⁵, H.M. Motz³¹, K. Munakata²³, H. Murakami³¹, S. Nakahira²⁰, J. Nishimura⁸, G.A De Nolfo¹⁵, S. Okuno¹⁰, J.F. Ormes²⁵, S. Ozawa³¹, L. Pacini²⁵, F. Palma²⁸, V. Pal'shin¹, P. Papini²⁵, A.V. Penacchioni²⁹, B.F. Rauch³², S.B. Ricciarini²⁵, K. Sakai³, T. Sakamoto¹, M. Sasaki³, Y. Shimizu¹⁰, A. Shiomi¹⁸, R. Sparvoli²⁸, P. Spillantini²⁵, F. Stolzi²⁹, S. Sugita¹, J.E. Suh²⁹, A. Sulaj²⁹, I. Takahashi¹¹, M. Takayanagi⁸, M. Takita⁷, T. Tamura¹⁰, N. Tateyama¹⁰, T. Terasawa⁷, H. Tomida⁸, S. Torii^{9,31}, Y. Tunesada¹⁹, Y. Uchihori¹⁶, S. Ueno⁸, E. Vannuccini²⁵, J.P. Wefel¹³. K. Yamaoka¹⁴, S. Yanagita⁶, A. Yoshida¹, and K. Yoshida²² - 1) Aoyama Gakuin University, Japan - 2) CRESST/NASA/GSFC and Universities Space Research Association, USA - 3) CRESST/NASA/GSFC and University of Maryland, USA - 4) Hirosaki University, Japan - 5) Ibaraki National College of Technology, Japan - 6) Ibaraki University, Japan - 7) ICRR, University of Tokyo, Japan - 8) ISAS/JAXA Japan - 9) JAXA, Japan - 10) Kanagawa University, Japan - 11) Kavli IPMU, University of Tokyo, Japan - 12) KEK, Japan - 13) Louisiana State University, USA - 14) Nagoya University, Japan - 15) NASA/GSFC, USA - 16) National Inst. of Radiological Sciences, Japan - 17) National Institute of Polar Research, Japan - 18) Nihon University, Japan - 19) Osaka City University, Japan - 20) RIKEN, Japan - 21) Ritsumeikan University, Japan - 22) Shibaura Institute of Technology, Japan - 23) Shinshu University, Japan - 24) University of Denver, USA - 25) University of Florence, IFAC (CNR) and INFN, Italy - 26) University of Padova and INFN, Italy - 27) University of Pisa and INFN, Italy - 28) University of Rome Tor Vergata and INFN, Italy - 29) University of Siena and INFN, Italy - 30) University of Tokyo, Japan - 31) Waseda University, Japan - 32) Washington University-St. Louis, USA - 33) Yokohama National University, Japan - 34) Yukawa Institute for Theoretical Physics, Kyoto University, Japan ## **CALET Collaboration Team** O. Adriani²⁵, Y. Akaike², K. Asano⁷, Y. Asaoka^{9,31}, M.G. Bagliesi²⁹, E. Berti²⁵, G. Bigongiari²⁹, W.R. Binns³², S. Bonechi²⁹, M. Bongi²⁵, P. Brogi²⁹, A. Bruno¹⁵, J.H. Buckley³², N. Cannady¹³, G. Castellini²⁵, C. Checchia²⁶, M.L. Cherry¹³, G. Collazuol²⁶, V. Di Felice²⁸, K. Ebisawa⁸, H. Fuke⁸, T.G. Guzik¹³, T. Hams³, N. Hasebe³¹, K. Hibino¹⁰, M. Ichimura⁴, K. Ioka³⁴, W. Ishizaki⁷, M.H. Israel³², K. Kasahara³¹, J. Kataoka³¹, R. Kataoka¹⁷, Y. Katayose³³, C. Kato²³, Y.Kawakubo¹, N. Kawanaka³⁰, K. Kohri¹², H.S. Krawczynski³², J.F. Krizmanic², T. Lomtadze²⁷, P. Maestro²⁹, P.S. Marrocchesi²⁹, A.M. Messineo²⁷, J.W. Mitchell¹⁵, S. Miyake⁵, A.A. Moiseev³, K. Mori^{9,31}, M. Mori²¹, N. Mori²⁵, H.M. Motz³¹, K. Munakata²³, H. Murakami³¹, S. Nakahira²⁰, J. Nishimura⁸, G.A De Nolfo¹⁵, S. Okuno¹⁰, J.F. Ormes²⁵, S. Ozawa³¹, L. Pacini²⁵, F. Palma²⁸, V. Pal'shin¹, P. Papini²⁵, A.V. Penacchioni²⁹, B.F. Rauch³², S.B. Ricciarini²⁵, K. Sakai³, T. Sakamoto¹, M. Sasaki³, Y. Shimizu¹⁰, A. Shiomi¹⁸, R. Sparvoli²⁸, P. Spillantini²⁵, F. Stolzi²⁹, S. Sugita¹, J.E. Suh²⁹, A. Sulaj²⁹, I. Takahashi¹¹, M. Takayanagi⁸, M. Takita⁷, T. Tamura¹⁰, N. Tateyama¹⁰, T. Terasawa⁷, H. Tomida⁸, S. Torii^{9,31}, Y. Tunesada¹⁹, Y. Uchihori¹⁶, S. Ueno⁸, E. Vannuccini²⁵, J.P. Wefel¹³, K. Yamaoka¹⁴, S. Yanagita⁶, A. Yoshida¹, and K. Yoshida²²