

CALET Payload

- Mass: 612.8 kg JEM Standard Payload
- Size: 1850mm (L) × 800mm (W) × 1000mm (H)
- Power: 507 W (max)
- Telemetry: Medium 600 kbps (6.5GB/day)

Cosmic Ray Observations aboard the ISS and CALET program

Main CALET science objectives:

- → Electron observation in 1 GeV 20 TeV range.

 Design optimized for electron detection: high energy resolution and large e/p separation power + e.m. shower containment. Detailed study of spectral shape. Search for Dark Matter and Nearby Sources
- Observation of cosmic-ray nuclei in the energy region from 10 GeV to 1 PeV. Unravelling the CR acceleration and propagation mechanism(s)
- → Detection of transient phenomena in space Gamma-ray bursts, e.m. GW counterparts, Solar flares, Space Weather

Scientific Objectives	Observation Targets	Energy Range
CR Origin and Acceleration	Electron spectrum Individual spectra of elements from proton to Fe Ultra Heavy Ions ($26 < Z \le 40$) Gamma-rays (Diffuse + Point sources)	1GeV - 20 TeV 10 GeV - 1000 TeV > 600 MeV/n 1 GeV - 1 TeV
Galactic CR Propagation	B/C and sub-Fe/Fe ratios	Up to some TeV/n
Nearby CR Sources	Electron spectrum	100 GeV - 20 TeV
Dark Matter	Signatures in electron/gamma-ray spectra	100 GeV - 20 TeV
Solar Physics	Electron flux (1GeV-10GeV)	< 10 GeV
Gamma-ray Transients	Gamma-rays and X-rays	7 keV - 20 MeV

CALET instrument in a nutshell

Field of view: ~ 45 degrees (from the zenith)

Geometrical Factor: ~ 1,040 cm²sr (for electrons)

CALET: a unique set of key instruments

- □ CHD: a dedicated charge detector + multiple dE/dx sampling in the IMC allow the identification of individual nuclear species (charge resolution ~0.15-0.3 e).
- □ IMC: high granularity (1mm) imaging pre-shower calorimeter to accurately reconstruct the arrival direction of incident particles (~0.1°) and the starting point of electro-magnetic showers.

 Scifi + Tungsten absorbers: 3 X₀ (=0.2 X₀ x 5 + 1.0 X₀ x 2)
- TASC: thick (27 X₀) homogeneous PWO calorimeter allowing to extend electron measurements into the TeV energy region with ~2% energy resolution.
- □ Combined (30 X_{0} , 1.2 λ_{I}) they separate electrons from the abundant protons (rejection > 10^{5} .).

Examples of Observed Events

Proton, ΔE=2.89 TeV

Multi-prong background event (interaction in CHD)

Iron, ΔE=9.3 TeV

CALET Instrument overview

Energy Measurement in a wide dynamic range 1-10⁶ MIPs

Pier S. Marrocchesi

Observations with High Energy Trigger (>10GeV)

Observation with High Energy Trigger for 1327 days: Oct.13, 2015 – May 31, 2019

- □ The exposure, SΩT, has reached ~116 m² sr day for electron observations under continuous and stable operations.
- ☐ Total number of triggered events is ~1.8 billion with a live time fraction of ~84 %.

Accumulated observation time (live, dead)

Distribution of deposit energies (ΔE) in TASC

Position and Temperature Calibration + Long-term Stability

Energy Resolution for Electrons by On-orbit Calibration

Electron / Proton Discrimination [Y.Asaoka, COSPAR 2108 E1.5-0023-18]

Simple Two Parameter Cut

F_E: Energy fraction of the bottom layer sum to the whole energy deposit sum in TASC

R_E: Lateral spread of energy deposit in TASC-X1

Cut Parameter K is defined as follows:

$$K = log_{10}(F_E) + 0.5 R_E (/cm)$$

Boosted Decision Trees (BDT)

In addition to the two parameters on the left, TASC and IMC shower profile fits are used as discriminating variables

BDT Response using 9 parameters

Pier S. Marrocchesi

Charge Identification of Nuclei with CHD and IMC

Single element selection for p, He and light nuclei is achieved by CHD+IMC charge analysis.

Deviation from Z² response is corrected both in CHD and IMC using a core + halo ionization model (Voltz)

Combined CHD-IMC proton-Helium charge-ID

Direct measurement of proton spectrum by CALET

Spectral Behavior of Proton Flux

- Subranges of 50—500GeV, 1-10TeV can be fitted with single power law function, but not the whole range (significance > 3σ).
- Progressive hardening up to the TeV region was observed.
- "smoothly broken power-law fit" gives power law index consistent with AMS-02 in the low energy region, but shows larger index change and higher break energy than AMS-02.

Systematic Uncertainties (proton spectrum) Phys. Rev. Lett. 122, 181102 (2019)

Study flux stability via scan of parameter space

4.1%

Energy independent (normalization)

- Live time
- Radiation environment
- Long-term stability
- Quality cuts

Energy dependent

- MC model dependence
- Track consistency with TASC energy deposits
- Shower development requirement in IMC
- Charge identification
- Energy unfolding
- Beam test related uncertainties

Energy scale uncertainty

- beam test with < 400 GeV protons
- beam test with 150 GeV/n Ar fragments
- ground test with laser (response linearity)

36th ICRC July 30, 2019 - Madison

Pier S. Marrocchesi

Direct measurements of proton spectrum to date

15

CALET: Summary and Future Prospects

CALET Collaboration Team

O. Adriani²⁵, Y. Akaike², K. Asano⁷, Y. Asaoka^{9,31}, M.G. Bagliesi²⁹, E. Berti²⁵, G. Bigongiari²⁹, W.R. Binns³², S. Bonechi²⁹, M. Bongi²⁵, P. Brogi²⁹, A. Bruno¹⁵, J.H. Buckley³², N. Cannady¹³, G. Castellini²⁵, C. Checchia²⁶, M.L. Cherry¹³, G. Collazuol²⁶, V. Di Felice²⁸, K. Ebisawa⁸, H. Fuke⁸, T.G. Guzik¹³, T. Hams³, N. Hasebe³¹, K. Hibino¹⁰, M. Ichimura⁴, K. Ioka³⁴, W. Ishizaki⁷, M.H. Israel³², K. Kasahara³¹, J. Kataoka³¹, R. Kataoka¹⁷, Y. Katayose³³, C. Kato²³, Y.Kawakubo¹, N. Kawanaka³⁰, K. Kohri ¹², H.S. Krawczynski³², J.F. Krizmanic², T. Lomtadze²⁷, P. Maestro²⁹, P.S. Marrocchesi²⁹, A.M. Messineo²⁷, J.W. Mitchell¹⁵, S. Miyake⁵, A.A. Moiseev³, K. Mori^{9,31}, M. Mori²¹, N. Mori²⁵, H.M. Motz³¹, K. Munakata²³, H. Murakami³¹, S. Nakahira²⁰, J. Nishimura⁸, G.A De Nolfo¹⁵, S. Okuno¹⁰, J.F. Ormes²⁵, S. Ozawa³¹, L. Pacini²⁵, F. Palma²⁸, V. Pal'shin¹, P. Papini²⁵, A.V. Penacchioni²⁹, B.F. Rauch³², S.B. Ricciarini²⁵, K. Sakai³, T. Sakamoto¹, M. Sasaki³, Y. Shimizu¹⁰, A. Shiomi¹⁸, R. Sparvoli²⁸, P. Spillantini²⁵, F. Stolzi²⁹, S. Sugita¹, J.E. Suh²⁹, A. Sulaj²⁹, I. Takahashi¹¹, M. Takayanagi⁸, M. Takita⁷, T. Tamura¹⁰, N. Tateyama¹⁰, T. Terasawa⁷, H. Tomida⁸, S. Torii^{9,31}, Y. Tunesada¹⁹, Y. Uchihori¹⁶, S. Ueno⁸, E. Vannuccini²⁵, J.P. Wefel¹³. K. Yamaoka¹⁴, S. Yanagita⁶, A. Yoshida¹, and K. Yoshida²²

- 1) Aoyama Gakuin University, Japan
- 2) CRESST/NASA/GSFC and Universities Space Research Association, USA
- 3) CRESST/NASA/GSFC and University of Maryland, USA
- 4) Hirosaki University, Japan
- 5) Ibaraki National College of Technology, Japan
- 6) Ibaraki University, Japan
- 7) ICRR, University of Tokyo, Japan
- 8) ISAS/JAXA Japan
- 9) JAXA, Japan
- 10) Kanagawa University, Japan
- 11) Kavli IPMU, University of Tokyo, Japan
- 12) KEK, Japan
- 13) Louisiana State University, USA
- 14) Nagoya University, Japan
- 15) NASA/GSFC, USA
- 16) National Inst. of Radiological Sciences, Japan
- 17) National Institute of Polar Research, Japan

- 18) Nihon University, Japan
- 19) Osaka City University, Japan
- 20) RIKEN, Japan
- 21) Ritsumeikan University, Japan
- 22) Shibaura Institute of Technology, Japan
- 23) Shinshu University, Japan
- 24) University of Denver, USA
- 25) University of Florence, IFAC (CNR) and INFN, Italy
- 26) University of Padova and INFN, Italy
- 27) University of Pisa and INFN, Italy
- 28) University of Rome Tor Vergata and INFN, Italy
- 29) University of Siena and INFN, Italy
- 30) University of Tokyo, Japan
- 31) Waseda University, Japan
- 32) Washington University-St. Louis, USA
- 33) Yokohama National University, Japan
- 34) Yukawa Institute for Theoretical Physics, Kyoto University, Japan

CALET Collaboration Team

O. Adriani²⁵, Y. Akaike², K. Asano⁷, Y. Asaoka^{9,31}, M.G. Bagliesi²⁹, E. Berti²⁵, G. Bigongiari²⁹, W.R. Binns³², S. Bonechi²⁹, M. Bongi²⁵, P. Brogi²⁹, A. Bruno¹⁵, J.H. Buckley³², N. Cannady¹³, G. Castellini²⁵, C. Checchia²⁶, M.L. Cherry¹³, G. Collazuol²⁶, V. Di Felice²⁸, K. Ebisawa⁸, H. Fuke⁸, T.G. Guzik¹³, T. Hams³, N. Hasebe³¹, K. Hibino¹⁰, M. Ichimura⁴, K. Ioka³⁴, W. Ishizaki⁷, M.H. Israel³², K. Kasahara³¹, J. Kataoka³¹, R. Kataoka¹⁷, Y. Katayose³³, C. Kato²³, Y.Kawakubo¹, N. Kawanaka³⁰, K. Kohri¹², H.S. Krawczynski³², J.F. Krizmanic², T. Lomtadze²⁷, P. Maestro²⁹, P.S. Marrocchesi²⁹, A.M. Messineo²⁷, J.W. Mitchell¹⁵, S. Miyake⁵, A.A. Moiseev³, K. Mori^{9,31}, M. Mori²¹, N. Mori²⁵, H.M. Motz³¹, K. Munakata²³, H. Murakami³¹, S. Nakahira²⁰, J. Nishimura⁸, G.A De Nolfo¹⁵, S. Okuno¹⁰, J.F. Ormes²⁵, S. Ozawa³¹, L. Pacini²⁵, F. Palma²⁸, V. Pal'shin¹, P. Papini²⁵, A.V. Penacchioni²⁹, B.F. Rauch³², S.B. Ricciarini²⁵, K. Sakai³, T. Sakamoto¹, M. Sasaki³, Y. Shimizu¹⁰, A. Shiomi¹⁸, R. Sparvoli²⁸, P. Spillantini²⁵, F. Stolzi²⁹, S. Sugita¹, J.E. Suh²⁹, A. Sulaj²⁹, I. Takahashi¹¹, M. Takayanagi⁸, M. Takita⁷, T. Tamura¹⁰, N. Tateyama¹⁰, T. Terasawa⁷, H. Tomida⁸, S. Torii^{9,31}, Y. Tunesada¹⁹, Y. Uchihori¹⁶, S. Ueno⁸, E. Vannuccini²⁵, J.P. Wefel¹³, K. Yamaoka¹⁴, S. Yanagita⁶, A. Yoshida¹, and K. Yoshida²²

