Extended Measurement of Cosmic-Ray Electron and Positron Spectrum from CALET on the ISS

Shoji Torii
Waseda University & Kanagawa University for the CALET collaboration

CRD2c 25 July, 2019
CALET Payload

- Mass: 612.8 kg
- JEM Standard Payload Size: 1850mm(L) × 800mm(W) × 1000mm(H)
- Power Consumption: 507 W (max)
- Telemetry: Medium 600 kbps (6.5GB/day) / Low 50 kbps

Launched on Aug. 19th, 2015 by the Japanese H2-B rocket
Emplaced on JEM-EF port #9 on Aug. 25th, 2015

Kounotori (HTV) 5

CGBM (CALET Gamma-ray Burst Monitor)

FRGF (Flight Releasable Grapple Fixture)

ASC (Advanced Stellar Compass)

Calorimeter

GPSR (GPS Receiver)

MDC (Mission Data Controller)

Shoji Torii

36th ICRC, Madison, July 25, 2019
CALET Instrument

<table>
<thead>
<tr>
<th></th>
<th>CHD (Charge Detector)</th>
<th>IMC (Imaging Calorimeter)</th>
<th>TASC (Total Absorption Calorimeter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measure</td>
<td>Charge (Z=1-40)</td>
<td>Tracking, Particle ID</td>
<td>Energy, e/p Separation</td>
</tr>
<tr>
<td>Geometry (Material)</td>
<td>Plastic Scintillator 14 paddles x 2 layers (X,Y): 28 paddles Paddle Size: 32 x 10 x 450 mm³</td>
<td>448 Scifi x 16 layers (X,Y): 7168 Scifi 7 W layers (3X₀): 0.2X₀ x 5 + 1X₀ x2 Scifi size: 1 x 1 x 448 mm³</td>
<td>16 PWO logs x 12 layers (x,y): 192 logs log size: 19 x 20 x 326 mm³ Total Thickness: 27 X₀, ~1.2 λᵢ</td>
</tr>
<tr>
<td>Readout</td>
<td>PMT+CSA</td>
<td>64-anode PMT + ASIC</td>
<td>APD/PD+CSA (for Trigger)@top layer</td>
</tr>
</tbody>
</table>

Plastic Scintillator

Scintillating Fiber

Scintillator(PWO)

+ APD/PD or PMT (X1)
CALET Capability

Field of view: ~ 45 degrees (from the zenith)
Geometrical Factor: ~ 1,040 cm²sr (for electrons)

Unique features of CALET

- **A dedicated charge detector + multiple dE/dx track sampling in the IMC allow to identify individual nuclear species ($\Delta z \sim 0.15-0.3$ e).**
- **Thick (~30 X_0), fully active calorimeter allows measurements well into the TeV energy region with excellent energy resolution (~2-3%).**
- **High granularity imaging pre-shower calorimeter accurately identify the arrival direction of incident particles (~0.2°) and the starting point of electro-magnetic showers.**
 - Combined, they powerfully separate electrons from the abundant protons: contamination is much less than 10% up to the TeV region.
Examples of Event Display

Electron, $E=3.05$ TeV

Proton, $\Delta E=2.89$ TeV

Fe, $\Delta E=9.3$ TeV

Gamma-ray, $E=44.3$ GeV

Unit in MIP
Energy Reconstruction for Electromagnetic Showers

Energy reconstruction factor vs. Energy

4 TeV electron candidate (well contained) ⇒ very small leakage (~ a few %)

416 (A) Fully-contained

570 (B) Nearly fully-contained

1040 (C) Side-incident

26.4cm (D) Side-out

Shoji Torii 36th ICRC, Madison, July 25, 2019
Electron Identification

Simple Two Parameter Cut

F_E: Energy fraction of the bottom layer sum to the whole energy deposit sum in TASC

R_E: Lateral spread of energy deposit in TASC-X1

Cut Parameter K is defined as follows:

$$K = \log_{10}(F_E) + 0.5 \frac{R_E}{\text{cm}}$$

Boosted Decision Trees (BDT)

In addition to the two parameters in the left, TASC and IMC shower profile fits are used as discriminating variables.
• Constant and high efficiency is the key point in our analysis.
• Simple two parameter cut is used in the low energy region while the difference in resultant spectrum are taken into account in the systematic uncertainty.

Energy vs Efficiency by Cut

Energy vs Proton Contamination

due to HE trigger threshold
In the final electron sample, the resultant contamination ratios of protons are:
5 % up to 1 TeV; 10% - 20% in the 1 - 4.8 TeV region, while keeping a constant high efficiency of 80 % for electrons.
Stability of BDT Analysis and Energy Dependence of Systematic Uncertainties

Stability of BDT analysis with respect to independent training samples and BDT-cut efficiency in the $949 < E < 1194$ GeV

- Color maps show the flux ratio dependence on efficiency, where the bin value (number of trials) increases as color changes from violet, blue, green, yellow to red.
- A projection onto the Y-axis is shown as a rotated histogram (in gray color).

Energy dependence of systematic uncertainties

- The red squares represent the systematic uncertainties stemming from the electron identification based on BDT.
- The bands defined by black lines show the sum in quadrature of all the sources of systematics, except the energy scale uncertainties.
Extended Measurement by Observation over 780 days

Approximately doubled statistics above 500GeV by using full acceptance of CALET

Shoji Torii
Prospects for the CALET All-Electron Spectrum

Five years or more observations ⇒ 3 times more statistics, reduction of systematic errors

- The possibility of new discoveries dwells in fine structures of the all-electron spectrum.
- Taking advantage of localness, the TeV all-electron spectrum approaches its origin.

Further precision ⇒ origin of positron excess pulsar or dark matter

Extension of energy reach & anisotropy ⇒ identification of local cosmic-ray accelerator

Contribution from distant SNe

Local young SNe

Cygnus Loop

Monogem

Vela
Summary and Future Prospects

- CALET was successfully launched on August 19th, 2015, and is successfully carrying out observations since October 2015 with stable instrument performance.

- As of the end of May, 2019, the exposure amount, $S_\Omega T$, reached more than 110 m2 sr day for electron observations over 10 GeV.

- We have reported results of the all-electron ($e^+ + e^-$) spectrum in the energy range from 10 GeV to 4.8 TeV.

- Further observations will improve the measurement of electron spectrum by better statistics and a further reduction of the systematic errors, especially in the TeV region.

- We gratefully acknowledge JAXA’s contribution to the development of CALET and to the operation on the ISS.