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Nuclei measurement with CALET

Nuclei measurements in GeV — TeV

Primary individual spectra §
" cosmic-ray acceleration and propagation %
* hardening of spectra €
Secondary-to-primary flux ratio “

" cosmic-ray propagation
- energy dependence of diffusion coefficient

Direct measurements with CALET
Energy spectra from Proton to Iron
Energy measurement in 10 GeV — 1PeV
- dynamic range : 1 —10°MIP
Charge measurementinZ=1-40
» charge resolution: 0.18e(C)-0.3e(Fe)
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Instrument of CALET

A 30 radiation length deep calorimeter designed to detect
electrons and gammas to 20 TeV and cosmic rays up to 1 PeV
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CHD: Charge Detector

Charge measurements (Z=1-40)

- Plastic scintillator paddles 14 x (X, Y)
Unit size: 32mm x 10 mm x 450 mm
AZ/Z =0.18 for C, 0.30 for Fe

IMC: Imaging Calorimeter

Arrival direction, Particle ID

- Scintillating fiber belts 448 x 16 layers
Unit size: 1 mm?2 x 448 mm

- Tungsten plates 7 layers
3 X, (=0.2 Xy X 5 + 1.0 Xpx 2)

AX at CHD =300um
TASC: Total Absorption Calorimeter

Energy measurement, Particle ID

-PWO logs 16 x 12 layers
Unit size: 19 mm x 20 mm x 326 mm
27 X, for electrons
1.2 interaction length for protons
Dynamic range ; 1 — 10 MIP (1GeV — 1PeV)
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Analysis procedure

HE (High Energy) trigger
* Period: Oct. 13 2015 - Dec. 31 2018 (1,176 days)

Offline shower trigger

Tracking with IMC

* select events satisfied Geom.A+B

* identify the impact point

Charge consistency with CHD and IMC

* remove backgrounds

* maintain charge resolution

Charge selection with CHD

* estimate background

Energy measurements and unfolding
* measure energy with TASC

AETAs'C:l.BTeV
= unfold energy spectrum by Iterative Bayesian process

Flux Calculation



Onboard trigger for heavy nuclei

On-board High Energy shower trigger (HE Trigger):
- The energy thresholds are set to detect shower events with energies over 10GeV

For light nuclei (Z<10), only events interacting in the detector are triggered.
For heavy nuclei, most events including events interacting in deep layers are triggered because of
the large dE/dx (o< Z?) = trigger efficiency is almost 100%.

Onboard HE Trigger

IMC7+8

—

TASC-X1

s ———————
UOOO000000000000)
UODO0O00000000000
[ ————————

OoOOOO0O0O00000000
e
UODOO0OO00000000
[ P O OSSP |
UO0DOO0D0000000000)
|

Efficiency

0.8

0.6

0.4

0.2

HE trigger efficiency

ssF€

470" B S

- PUPSRSS o s
-~
"
/ odl
.~

80

3
P
®

Over 10GeV/n are shown

IIIIIIIIIIIIIIIIIIIII

llll 1 1 lllllll 1 L lllllll L 1 | S

102 10° 10* 10°
Energy [GeV]

5




Shower event selection for heavy nuclei

On-board High Energy shower trigger (HE Trigger):
- The energy thresholds are set to detect shower events with energies over 10GeV

For light nuclei (Z<10), only events interacting in the detector are triggered.

For heavy nuclei, most events including events interacting in deep layers are triggered because of
the large dE/dx (o< Z?) = trigger efficiency is almost 100%.

= Apply shower event selection in offline analysis

Shower event selection Efficiency of shower event selection
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Tracking with IMC
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 Reconstruct shower axis with IMC signals

= Heavy nuclei can make many shower particles in IMC,
which could be a large background for track;
the signal of primary particle is commonly larger than
the signals of the shower particles; dE/dx « 72

=> Simple tracking methods: Least chi-square fitting is

applied for the maximum clusters in upper 4 IMC layers.
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Accuracy of impact point at CHD
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Charge measurement

Counts

- Non-linearity response toZ? is corrected
both in CHD and IMC from flight data
= Charge resolution with CHD : 0.18 for C

0.30 for Fe

* Charge resolution with IMC : 0.19 for C
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Event selection

Two selections are applied

to remove events with mis-reconstructed track such as particles entering from the
detector side, and to remove background events interacting in the CHD

@ Charge consistency cuts

- | Zepox = Zewoy | < 10%
|Zeyp = Zimel < 15%
| Zinc12— Zimcsal < 15%

ZCHDY
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Efficiency and Background

Charge distribution with CHD
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Energy unfolding

Incident Energy [GeV]
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Characteristics of nuclei measurements with CALET calorimeter:
- thickness: 30 X, for electron, 1.3\ for proton

-o(E)/JE : 2% for electron, 30% for nuclei
= Need energy unfolding for nuclei to obtain primary energy spectrum
/@ Iterative Bayesian unfolding I

- Initial assuming spectra: f(E)=A x E-2:%0
A is normalized by charge distribution in CHD
- Response function:

\_ AE [GeV] (deposit energy in calorimeter) vs E, [GeV] (primary energy) .
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Energy spectra of primary components
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B/C

Boron-to-carbon ratio

¢+ CALET Preliminary
“B:"B=3:7
[ ] statistical and systematic errors
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= Trigger efficiency

* Charge consistency cuts

* Track width selection

= Window range for charge identification

* Background model of p and He spectra

* Initial prior spectra of energy unfolding

* Energy correction with beam test results

* Difference of beam test model and flight model
* Long term stability
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Summary

The ability of CALET to measure cosmic-ray nuclei has been successfully
demonstrated

— Dynamic range for energy measurement: 1-10° MIP (1GeV — 1PeV)

— Charge resolution: 0.18 for carbon, 0.30 for iron

Using data from the 1,176 days of operation, preliminary analysis of nuclei
has been successfully carried out

— primary cosmic-ray elements up to 100 TeV

— B/C ratio up to 200 GeV/n

Independent analyses were carried out using different event selection
procedures and MC simulations. Preliminary results are consistent.

Further studies on an increased data set and detailed systematic study will
increase the sensitivity to detailed spectral features, which may provide a
key to solve questions about galactic cosmic-ray acceleration and
propagation.



