

CALET results after three years on orbit on the International Space Station.

Paolo Maestro

University of Siena & INFN

On behalf of the CALET collaboration

ISCRA 2019

- 28 June 2019, MEPhi, Moscow, Russia

CALET Collaboration Team

 O. Adriani²⁵, Y. Akaike², K. Asano⁷, Y. Asaoka^{9,31}, M.G. Bagliesi²⁹, E. Berti²⁵, G. Bigongiari²⁹, W.R. Binns³², S. Bonechi²⁹, M. Bongi²⁵, P. Brogi²⁹, A. Bruno¹⁵, J.H. Buckley³², N. Cannady¹³,
 G. Castellini²⁵, C. Checchia²⁶, M.L. Cherry¹³, G. Collazuol²⁶, V. Di Felice²⁸, K. Ebisawa⁸, H. Fuke⁸, T.G. Guzik¹³, T. Hams³, N. Hasebe³¹, K. Hibino¹⁰, M. Ichimura⁴, K. Ioka³⁴, W. Ishizaki⁷, M.H. Israel³², K. Kasahara³¹,
 J. Kataoka³¹, R. Kataoka¹⁷, Y. Katayose³³, C. Kato²³, Y.Kawakubo¹, N. Kawanaka³⁰, K. Kohri¹², H.S. Krawczynski³²,
 J.F. Krizmanic², T. Lomtadze²⁷, P. Maestro²⁹, P.S. Marrocchesi²⁹, A.M. Messineo²⁷, J.W. Mitchell¹⁵, S. Miyake⁵,
 A.A. Moiseev³, K. Mori^{9,31}, M. Mori²¹, N. Mori²⁵, H.M. Motz³¹, K. Munakata²³, H. Murakami³¹, S. Nakahira²⁰,
 J. Nishimura⁸, G.A De Nolfo¹⁵, S. Okuno¹⁰, J.F. Ormes²⁵, S. Ozawa³¹, L. Pacini²⁵, F. Palma²⁸, V. Pal'shin¹, P. Papini²⁵, A.V. Penacchioni²⁹, B.F. Rauch³², S.B. Ricciarini²⁵, K. Sakai³, T. Sakamoto¹,
 M. Sasaki³, Y. Shimizu¹⁰, A. Shiomi¹⁸, R. Sparvoli²⁸, P. Spillantini²⁵, F. Stolzi²⁹, S. Sugita¹, J.E. Suh²⁹,
 A. Sulaj²⁹, I. Takahashi¹¹, M. Takayanagi⁸, M. Takita⁷, T. Tamura¹⁰, N. Tateyama¹⁰, T. Terasawa⁷, H. Tomida⁸, S. Torii^{9,31}, Y. Tunesada¹⁹, Y. Uchihori¹⁶, S. Ueno⁸, E. Vannuccini²⁵, J.P. Wefel¹³, K. Yamaoka¹⁴, S. Yanagita⁶, A. Yoshida¹, and K. Yoshida²²

- 1) Aoyama Gakuin University, Japan
- 2) CRESST/NASA/GSFC and Universities Space Research Association, USA
- 3) CRESST/NASA/GSFC and University of Maryland, USA
- 4) Hirosaki University, Japan
- 5) Ibaraki National College of Technology, Japan
- 6) Ibaraki University, Japan
- 7) ICRR, University of Tokyo, Japan
- 8) ISAS/JAXA Japan
- 9) JAXA, Japan
- 10) Kanagawa University, Japan
- 11) Kavli IPMU, University of Tokyo, Japan
- 12) KEK, Japan
- 13) Louisiana State University, USA
- 14) Nagoya University, Japan
- 15) NASA/GSFC, USA
- 16) National Inst. of Radiological Sciences, Japan
- 17) National Institute of Polar Research, Japan

- 18) Nihon University, Japan
- 19) Osaka City University, Japan
- 20) RIKEN, Japan
- 21) Ritsumeikan University, Japan
- 22) Shibaura Institute of Technology, Japan
- 23) Shinshu University, Japan
- 24) University of Denver, USA
- 25) University of Florence, IFAC (CNR) and INFN, Italy
- 26) University of Padova and INFN, Italy
- 27) University of Pisa and INFN, Italy
- 28) University of Rome Tor Vergata and INFN, Italy
- 29) University of Siena and INFN, Italy
- 30) University of Tokyo, Japan
- 31) Waseda University, Japan
- 32) Washington University-St. Louis, USA
- 33) Yokohama National University, Japan
- 34) Yukawa Institute for Theoretical Physics, Kyoto University, Japan

CALET payload

Launched on Aug. 19th 2015 on the Japanese H2-B rocket Emplaced on JEM-EF port#9 On Aug. 25th 2015

• Mass: 612.8 kg

- JEM Standard Payload Size
 1850 mm (L) × 800 mm (W) × 1000 mm (H)
- Power Consumption: 507 W (max)
- Telemetry: Medium 600 kbps (6.5GB/day) / Low 50 kbps

ISCRA 2019, Moscow

CALET instrument

				CGBM
	CHD-FEC IMC-FEC TASC-FEC	CHD IMC TASC	HD-FEC IMC-FEC	LaBr ₃ (Ce)
	Detector	CALORI Measure	METER Geometry/Material	BGO Readout
	CHD (Charge Detector)	Charge (Z=1-40)	Plastic Scintillator 14 paddles × 2 layers (X,Y) Paddle size: 3.2×1×45 cm ³	PMT+CSA
TASC	IMC (Imaging Calorimeter)	Tracking Particle ID	448 Scifi × 16 layers (X,Y) 7 W layers (3 X₀) Scifi size: 1×1×448 mm³	64 MAPMT+ ASIC
	TASC (Total Absorption Calorimeter)	Energy e/p separation	16 PWO logs × 12 layers (X, log size: 1.9×2×32.6 cm ³ Total thickness: 27 X ₀ , ~1.2	Y) APD/PD + CSA PMT+CSA λ (for Trigger)

Science Objectives	Observation Targets	Energy range	
Nearby CR sources	Electron spectrum	100 GeV – 20 TeV	
Dark Matter	Signatures in e/γ spectra	100 GeV – 20 TeV	
	Electron spectrum	1 GeV – 20 TeV	
CR Origin and Acceleration	p-Fe individual spectra	10 GeV – 10 ³ TeV	
	Ultra Heavy Ions (26 <z≤40)< td=""><td>few GeV/n</td></z≤40)<>	few GeV/n	
Galactic CR Propagation	B/C sub-Fe/Fe ratios	Up to some TeV/n	
Solar Physics	Electron flux	< 10 GeV	
Transient phenomena (GRB, e.m. counterpart of GW)	Gamma and X-rays	7 keV – 20 MeV	

TASC calibration

Y. Asaoka et al. (CALET Collaboration) Astropart. Phys. 91 (2017) 1

Observations with High Energy Trigger (>10GeV)

Observation by High Energy Trigger for 1327 days : Oct.13, 2015 – May 31, 2019

- The exposure, SΩT, has reached ~116 m² sr day for electron observations under continuous and stable operations.
- > Total number of triggered events is \sim 1.8 billion with a live time fraction of 84.0 %.

Cosmic-ray protons

O. Adriani et al. (CALET Collaboration), PRL 181122 (2019)

Event Selection

Analyzed Flight Data:

- 1054 days (Oct. 13, 2015 to Aug. 31, 2018)
- 40% of full CALET acceptance (Acceptance A; 416 cm² sr)

1. Offline trigger confirmation (LE/HE shower triggers: > 5 (50) MIP for IMC-X/Y78,

> 10 (100) MIP for TASC-X1)

- 1. Acceptance Cut (events crossing CHD, TASC top and bottom layers within 2 cm from the edge)
- 2. Track quality cut
- 3. Electron rejection cut (based on Moliere concentration)
- 4. Off-acceptance events rejection (topological cuts on fraction of energy deposited in each TASC layers and in edge TASC logs)
- 5. Track consistency with TASC energy deposit
- 6. Existence of a shower core in IMC
- 7. Charge ID (CHD and multiple dE/dx sampling along the track in IMC)

Tracking performance

ISCRA 2019, Moscow

p/He charge identification

Corrections to adjust the peak positions which shift as the energy increases due to backscattering effect

- Beam test calibration at CERN-SPS with proton beams up to 400 GeV.
- Trigger efficiency and energy response derived from MC simulations were accurately tuned using the beam test results.
- ➤ Three detailed MC simulations of CALET instrument were developed based on EPICS, FLUKA (with hadronic package DPMJET-III), and GEANT4 → compare response at high energy where no beam calibration is available
- > Energy fraction for protons \sim 35%.

Energy resolution 30-40% → Unfolding

Example of a proton event with an energy deposit sum $E_{TASC} \sim 10 \text{ TeV}$

ISCRA 2019, Moscow

Flux measurement

$$\Phi(E) = \frac{n(E)}{S\Omega_{eff}(E) \ \Delta E \ T}$$

 $n(E) = U\left(N_{obs}(E_{TASC}) - N_{bkg}(E_{TASC})\right)$

n(E): bin counts of the unfolded distribution

Background correction for He contamination and off-acceptance events (at most 5% in lowest and highest energy region, few % in intermediate region)

 $S\Omega_{eff}$: effective acceptance including all selection efficiencies for HE and LE trigger analysis

Systematic uncertainties

Main sources of systematics uncertainties:

- hadronic interaction modeling
- energy response
- track reconstruction
- charge identification

Stability of the measured spectrum vs. variations of analysis cuts and different MC simulations for efficiencies and unfolding.

Proton spectrum

CALET proton measurement energy interval: 50 GeV - 10 TeV.

Consistent with AMS02 (CREAM-III) in low (high) energy region

First space-based instrument covering the whole energy range previously investigated in separate subranges by magnetic spectrometers and calorimeters.

Spectral analysis

Cosmic-ray nuclei

Tracking performance

Charge identification

- Redundant charge measurements by combined CHD and multiple dE/dx in IMC fibers in the first 4 X/Y layers.
- Non linear response to Z² due to light saturation in the scintillators is corrected using a core+halo model (Voltz).
- Excellent resolution:
 - CHD $\sigma_{Z}{\sim}0.15$ e (BCNO), ${\sim}0.28$ e (Fe)
 - IMC σ_{Z} ~0.2 e in BCNO region

ISCRA 2019, Moscow

High-energy trigger efficiency

- High-Energy Trigger (HET) is the primary CALET mission trigger.
- It is based on the coincidence of signals in last four IMC layers and top TASC layer, with thresholds chosen to ensure >95% efficiency for electrons > 10 GeV
- HET efficiency for nuclei is measured using subset of data taken with same trigger logic but lower thresholds (allowing to trigger also penetrating particles).
- HET is modelled in simulation: good agreement between MC and flight data

C/O dN/dE and background estimate

- dN/dE distributions of Z>4 nuclei mis-identified as C/O are estimated from data.
- Background due to H/He is computed by normalizing MC distributions to the real fluxes
- Total background is few % in all energy bins

Preliminary carbon and oxygen spectra

Preliminary flux of primary components

ISCRA 2019, Moscow

Preliminary B/C flux ratio

Preliminary abundances of ultra-heavy nuclei

B. Rauch, APS meeting April 14, 2019

CALET measures the relative abundances of nuclei above Fe through ⁴⁰Zr Event Selection: Vertical cutoff rigidity > 4 GV & Zenith Angle < 60 degrees Contamination from neighboring charge are determined by multiple-Gaussian fit The CALET UH element ratio relative to ²⁶Fe show good agreement with SuperTIGER and ACE abundances.

All-electron spectrum (e++e-)

O.Adriani et al. (CALET collaboration), PRL 119 (2017) 181101 O.Adriani et al. (CALET collaboration), PRL 120 (2018) 261102

Electron vs. proton showers

1. Reliable tracking well-developed shower core

2. Fine energy resolution full containment of TeV electron showers

3. High-efficiency electron ID

30 X₀ thickness, closely packed logs

Flight data. Detector size in cm

CALET is an instrument optimized for all-electron spectrum measurements.

 \rightarrow CALET is best suited for observation of possible fine structures in the all-electron spectrum up to the TeV region

Event Selection

Analyzed Flight Data:

PRL 119 (2017) 181101

- 627 days (Oct.13, 2015 to June 30, 2017).
- 55% of full CALET acceptance (Acceptance A+B; 570cm²sr)
- 10 GeV 3 TeV

PRL 120 (2018) 261102

- 780 days (Oct.13, 2015 to Nov. 30, 2017)
- Full CALET acceptance at high energy (A+B+C+D~1040 cm² sr)
- Up to 4.8 TeV, doubled statistics at E>500 GeV
- 1. Offline Trigger
- 2. Acceptance Cut
- 3. Single Charge Selection
- 4. Track Quality Cut
- 5. Shower Development Consistency
- 6. Electron Identification
 - Simple two parameter cut (used for E<500 GeV)
 - Multivariate Analysis using Boosted Decision Trees (BDT)

Electron Identification

Simple Two Parameter Cut

 F_E: Energy fraction of the bottom layer sum to the whole energy deposit sum in TASC
 R_E: Energy weighted lateral spread in TASC-X1

Separation Parameter K is defined as: $K = log_{10}(F_E) + 0.5 R_E (/cm)$

Boosted Decision Trees

In addition to F_E and R_E , TASC and IMC shower profile fits are used as discriminating variables.

Electron Efficiency and Proton Rejection

Systematic Uncertainties

Stability of resultant flux analyzed by scanning parameter space

- > Normalization:
 - Live time
 - Radiation environment
 - Long-term stability
 - Quality cuts
- Energy dependent:
 - 2 independent tracking
 - charge ID
 - electron ID (K-Cut vs BDT)
 - MC model (EPICS vs Geant4)
 - BDT stability (vs efficiency & training)

ISCRA 2019, Moscow

Electron spectrum

Extended measurement by CALET

Extended measurement by CALET

Gamma-Rays

O.Adriani et al. (CALET Collaboration), ApJL 863 (2018) 160

N. Cannady et al. (CALET Collaboration), ApJS 238 (2018) 5

O.Adriani et al. (CALET Collaboration), ApJL 829 (2016) L20

Effective area ~400 cm² @ E> 2 GeV Angular resolution < 2° @ E> 1 GeV $< 0.2^{\circ}$ @ E>10 GeV Energy resolution ~12% at 1 GeV ~5% at 10 GeV

ISCRA 2019, Moscow

Search for X-ray and Gamma-ray counterparts of Gravitational Waves

Event	Туре	Mode	Sum.	Obs. time	Upper limits		
			LIGO prob.		Ene. Flux erg cm ⁻² s ⁻¹	Lum. erg s ⁻¹	
GW150914	BH-BH	Before operation					
GW151226	BH-BH	LE HXM SGM	15%	T ₀ -525 - T ₀ +211	9.3 x 10 ⁻⁸ 1.0 x 10 ⁻⁶ 1.8 x 10 ⁻⁶	2.3 x 10 ⁴⁸ 3-5 x 10 ⁴⁹	
GW170104	BH-BH	HE	30%	$T_0-60 - T_0+60$	6.4 x 10 ⁻⁶	6.2 x 10 ⁵⁰	
GW170608	BH-BH	HE	0%	$T_0-60 - T_0+60$	Out of FOV		
GW170814	BH-BH	HE	0%	$T_0-60 - T_0+60$	Out of FOV		
GW170817	NS-NS	HE	0%	T ₀ -60 - T ₀ +60	Out of FOV		

- CALET can search e.m. counterparts to LIGO/Virgo triggers
- No signal detected in CGBM and CAL for all GW events
- Upper limits set for GW151226
 (CAL+CGBM) and GW170104 (CAL)
- GW170608, GW170814, GW170817 out of CALET FOV

ISCRA 2019, Moscow

CGBM observations summary

As of June 2019: **159 GRBs** detected **140 Long (88%) 19 Short (12%)** Average rate ~43 GRBs/year

Examples of light curves

Summary and future prospects

- CALET was successfully launched on Aug. 19, 2015, and started observations on Oct. 13, 2015. Excellent performance and remarkable stability of the instrument !
- As of May 31, 2019, total observation time is 1327 days with live time fraction to total time close to 84%. Nearly 1.8 billion events collected with high energy trigger (>10 GeV)
- Accurate calibrations have been performed with non-interacting p & He events + linearity in the energy measurements established up to 10⁶ MIP's !
- Electron spectrum using full acceptance measured in energy range 11 GeV 4.8 TeV. Observed flux reduction above 1 TeV
- Proton spectrum: single measurement from 50 GeV to 10 TeV, clear spectral hardening measured at few hundreds of GeV
- Preliminary analysis of primary heavy nuclei up to 100 TeV, B/C ratio up to 200 GeV/n
- Preliminary abundances of trans-Fe elements.
- Capability of observing diffuse gamma-rays and bright point-sources is demonstrated
- CALET's CGBM detected nearly 159 GRBs in the energy range 7 keV-20 MeV
- Follow-up observation of the GW events is carried out in X-ray and gamma-rays
- \succ Excellent performance of CALET and data quality \rightarrow extension of the mission to 5 year