CALET
Calorimetric Electron Telescope

42th COSPAR Assembly
Pasadena, 2018 July 19

Pier Simone Marrocchesi
University of Siena & INFN-Pisa
for the CALET Collaboration
CALET Collaboration Team

1) Aoyama Gakuin University, Japan
2) CRESST/NASA/GSFC and Universities Space Research Association, USA
3) CRESST/NASA/GSFC and University of Maryland, USA
4) Hiroasaki University, Japan
5) Ibaraki National College of Technology, Japan
6) Ibaraki University, Japan
7) ICRR, University of Tokyo, Japan
8) ISAS/JAXA Japan
9) JAXA, Japan
10) Kanagawa University, Japan
11) Kavli IPMU, University of Tokyo, Japan
12) KEK, Japan
13) Louisiana State University, USA
14) Nagoya University, Japan
15) NASA/GSFC, USA
16) National Inst. of Radiological Sciences, Japan
17) National Institute of Polar Research, Japan
18) Nihon University, Japan
19) Osaka City University, Japan
20) RIKEN, Japan
21) Ritsumeikan University, Japan
22) Shibaura Institute of Technology, Japan
23) Shinshu University, Japan
24) University of Denver, USA
25) University of Florence, IFAC (CNR) and INFN, Italy
26) University of Padova and INFN, Italy
27) University of Pisa and INFN, Italy
28) University of Rome Tor Vergata and INFN, Italy
29) University of Siena and INFN, Italy
30) University of Tokyo, Japan
31) Waseda University, Japan
32) Washington University-St. Louis, USA
33) Yokohama National University, Japan
34) Yukawa Institute for Theoretical Physics, Kyoto University, Japan

42th COSPAR 2018 – Pasadena
CALET Collaboration Team

CALET Payload

Launched on Aug. 19th, 2015 by the Japanese H2-B rocket
Emplaced on JEM-EF port #9 on Aug. 25th, 2015
(JEM-EF: Japanese Experiment Module-Exposed Facility)

- Mass: 612.8 kg
- JEM Standard Payload Size:
 1850mm (L) × 800mm (W) × 1000mm (H)
- Power Consumption: 507 W (max)
- Telemetry:
 Medium 600 kbps (6.5GB/day) / Low 50 kbps
ISS: a Cosmic Ray Observatory in Low Earth Orbit

AMS Launch
May 16, 2011

JEM-EF

ISS-CREAM Launch
August 14, 2017

CALET Launch
August 19, 2015

P. S. Marrocchesi
CALET instrument in a nutshell

Field of view: ~ 45 degrees (from the zenith) Geometrical Factor: ~ 1,040 cm² sr (for electrons)

CALET: a unique set of key instruments

- **CHD**: a dedicated charge detector + multiple dE/dx sampling in the IMC allow to identify individual nuclear species (Δz~0.15-0.3 e).
- **IMC**: a high granularity (1mm) imaging pre-shower calorimeter accurately identifies the arrival direction of incident particles (~0.1°) and the starting point of electromagnetic showers.
- **TASC**: a thick (~30 X₀), fully active calorimeter allows to extend electron measurements into the TeV energy region with ~2% energy resolution.

Combined, they separate electrons from the abundant protons (rejection > 10⁵.).

Simulated Shower Profile

Gamma-ray 10 GeV

Electron 1 TeV

Proton 10 TeV
CALET Instrument overview

CHD (Charge Detector)
- **Measure**: Charge (Z=1-40)
- **Geometry (Material)**: Plastic Scintillators: 28 paddles, 14 paddles x 2 layers (X,Y)
 - Paddle Size: 32 x 10 x 450 mm³
- **Readout**: PMT+CSA

IMC (Imaging Calorimeter)
- **Measure**: Tracking, Particle ID
- **Geometry (Material)**: Scintillating Fibers: 448 x 16 layers (X,Y)
 - 7 W layers (3X₀): 0.2X₀ x 5 + 1X₀ x 2
 - Scifi size: 1 x 1 x 448 mm³
- **Readout**: 64-anode PMT+ ASIC

TASC (Total Absorption Calorimeter)
- **Measure**: Energy, e/p Separation
- **Geometry (Material)**: PWO logs: 16 x 12 layers (x,y): 192 logs
 - Log size: 19 x 20 x 326 mm³
 - Total Thickness: 27 X₀, ~1.2 λᵣ
- **Readout**: APD/PD+CSA
 - PMT+CSA (for Trigger)@top layer

Figure: Diagram showing the components of the CALET instrument, including CHD, IMC, and TASC modules. Each module is described with its specific materials, layer configurations, and readout methods.
◊ CALET **tracking** takes advantage of the IMAGING capabilities of IMC thanks to its granularity of 1 mm with Sci-fibers **readout individually**.

Example: A **multi-prong event** due to an interaction of the primary particle in the CHD is very well imaged by the IMC.
TASC Energy Measurement: wide Dynamical Range 1-10^6 MIPs

The whole dynamic range was calibrated by **UV laser irradiation** on ground:
1. The linearity of each gain range is confirmed in the range of 1.4-2.5%.
2. Each channel covers from 1 MIP to 10^6 MIPs.

<table>
<thead>
<tr>
<th></th>
<th>APD-H</th>
<th>APD-L</th>
<th>PD-H</th>
<th>PD-L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.4%</td>
<td>1.5%</td>
<td>2.5%</td>
<td>2.2%</td>
</tr>
</tbody>
</table>

The correlation between adjacent gain ranges is calibrated by using **in-flight data** in each channel.

Example of energy distribution in one PWO log
Some nearby sources, e.g. Vela SNR, are likely to have unique signatures in the electron energy spectrum at the TeV scale (Kobayashi et al. ApJ 2004)

CALET: Cosmic-Ray Nuclei Spectra in the Multi-TeV region

- Proton spectrum to ≈ 900 TeV
- He spectrum to ≈ 400 TeV/n
- Spectra of C,O,Ne,Mg,Si to ≈ 20 TeV/n
- B/C ratio to $\approx 4 - 6$ TeV/n
- Fe spectrum to ≈ 10 TeV/n

CALET energy reach (5 years)
Main Scientific Objectives

<table>
<thead>
<tr>
<th>Scientific Objectives</th>
<th>Observation Targets</th>
<th>Energy Range</th>
</tr>
</thead>
</table>
| CR Origin and Acceleration | Electron spectrum p→Fe individual spectra
Ultra Heavy Ions (26 < Z ≤40)
Gamma-rays (Diffuse + Point sources) | 1 GeV - 20 TeV
10 GeV - 1000 TeV
> 600 MeV/n
1 GeV - 1 TeV |
| Galactic CR Propagation | B/C and sub-Fe/Fe ratios | Up to some TeV/n |
| Nearby CR Sources | Electron spectrum | 100 GeV - 20 TeV |
| Dark Matter | Signatures in electron/gamma-ray spectra | 100 GeV - 20 TeV |
| Solar Physics | Electron flux (1 GeV-10 GeV) | < 10 GeV |
| Gamma-ray Transients | Gamma-rays and X-rays | 7 keV - 20 MeV |

- Electron observation in 1 GeV - 20 TeV is achieved with high energy resolution due to design optimization for electron detection. **Search for Dark Matter and Nearby Sources**
- Observation of cosmic-ray nuclei will be performed in energy region from 10 GeV to 1 PeV. **Unravelling the CR acceleration and propagation mechanism(s)**
- Detection of transient phenomena in space by stable observations. **Gamma-ray bursts, Solar flares, e.m. counterpart from GW sources, ...**
Observations with High Energy Trigger (>10GeV)

- The exposure, $S\Omega T$, has reached to $\sim 76.0 \text{ m}^2 \text{ sr day}$ for electron observations by continuous and stable operations.
- Total number of triggered events is $\sim 570 \text{ million}$ with a live time fraction of 85.0%.

Accumulated observation time (live, dead)

Accumulated triggered event number

<table>
<thead>
<tr>
<th>Time [hr]</th>
<th>12000</th>
<th>14000</th>
<th>16000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date [ymmdd UT]</td>
<td>16101</td>
<td>16040</td>
<td>16070</td>
</tr>
</tbody>
</table>

Live Time: 85.0%

Total Number: 5.68×10^8 events

6.53×10^5 events/day ($\sim 7.6 \text{ Hz}$)
Examples of Observed Events

- **Proton, ΔE=2.89 TeV**
- **Fe, ΔE=9.3 TeV**
- **Electron, E=3.05 TeV**
- **Gamma-ray, E=44.3 GeV**
ISS orbit @ 2017/08/29 5:25UT
ISS ran through SAA.
CHD count rate jumped up to \(\sim 3 \times 10^5 \) Hz from \(\sim 3 \) Hz, but the HE trigger rate remained stable.

Trigger/Count Rate @ 2017/08/29

HE trigger was not affected by SAA thanks to high energy threshold (>10 GeV).
(Energies of the trapped particles are too low to make a trigger for the observations.)

⇒ Observation is continuously carried out even at SAA!
Position and Temperature Calibration, and Long-term Stability

Example of position dependence correction

![Graph showing position dependence correction](image1)

Examples of temperature change correction

![Graph showing temperature change correction](image2)

Active Thermal Control System (ATCS) on ISS can provide very stable thermal condition during Long-term observations: $\Delta t \sim$ a few degrees

Energy Resolution for Electrons by On-orbit Calibration

Fine energy resolution of 2% or better was obtained above 20GeV.

![Graph showing energy resolution](image3)

Electron / Proton Separation

Simple Two Parameter Cut

F_E: Energy fraction of the bottom layer sum to the whole energy deposit sum in TASC

R_E: Lateral spread of energy deposit in TASC-X1

Cut Parameter K is defined as follows:

$$K = \log_{10}(F_E) + 0.5 \frac{R_E}{\text{cm}}$$

Boosted Decision Trees (BDT)

In addition to the two parameters in the left, TASC and IMC shower profile fits are used as discriminating variables

BDT Response using 9 parameters
Stability of resultant flux are intensively studied in the large parameter space (i.e., viable choices to derive spectrum)

- Normalization:
 - Live time
 - Radiation environment
 - Long-term stability
 - Quality cuts

- Energy dependent:
 - Tracking
 - charge ID
 - electron ID (K-Cut vs BDT)
 - BDT stability (vs efficiency & training)
 - MC model (EPICS vs Geant4)

N.B. Energy scale uncertainty is not included in this analysis.
Secondary component is estimated using azimuthal distributions.

- Performed in three different cutoff rigidity regions.
- Correction factor was found to be **1.035** compared to MIP calibration.

[Y.Asoka, E1.5-0023-18] [S.Miyake, E1.5-0027-18]
Cutoff Rigidity Measurements and Comparison with Calculation

- Performed in three different cutoff rigidity regions.
- Correction factor was found to be 1.035 compared to MIP calibration.

Since universal energy-scale calibration between different instruments is very important, we adopt the energy scale determined by rigidity cutoff to derive our spectrum.
Inclusive (e^+e^-) Electron Energy Spectrum [10 GeV, ~3TeV]

- Geometry Condition: $S\Omega = 570.3$ cm2sr (Fully Contained: 55% for all acceptance)
- Live Time: 2015/10/13–2017/06/30 (x 0.85) $\Rightarrow T = 4.57 \times 10^7$ sec
- Exposure: $S\Omega T = 2.64 \times 10^6$ m2 sr sec (less than 20% of full analysis for 5 years)

Energy resolution: $< 2\% @ >$ 20 GeV

- CALET incl. systematic uncertainty
- Fermi-LAT 2017 (HE+LE)
- AMS-02 2014
- PAMELA e^-+e^+
- HESS 2008+2009
Measurements of the electron spectrum

Comparison of CALET with DAMPE and other experiments in space

first published spectrum by CALET (red points)
in restricted (fiducial) acceptance $S\Omega = 570.3$ cm2sr
$\sim 55\%$ of full acceptance
Live time $= T = 4.57 \times 10^7$ s

CALET: PRL 119 (2017) 181101, 3 November 2017
DAMPE: Nature 552 (2017) 63, 7 December 2017

42th COSPAR 2018 – Pasadena P. S. Marrocchesi
Extended Measurement by CALET

Approximately doubled statistics above 500GeV by using full acceptance of CALET

CALET: Phys. Rev. Lett. 120, 261102, June 2018
DAMPE: Nature 552 (2017) 63, 7 December 2017

Energy [GeV]

CALET 2018
uncertainty band (stat. + syst.)

DAMPE 2017

PAMELA e⁻+e⁺ 2017

Fermi-LAT 2017 (HE+LE)

AMS-02 2014

HESS 2008+2009

42th COSPAR 2018 – Pasadena
P. S. Marrocchesi
1. CALET spectrum is consistent with AMS02 data below 1 TeV.

2. Present measurements cluster into 2 groups: **AMS02 + CALET** and **FERMI + DAMPE** possibly indicating the presence of unknown systematic errors.

3. Above 1 TeV CALET observes a **flux reduction** consistent with DAMPE within errors.

5. No peak-like structure at 1.4 TeV is observed in CALET data irrespective of energy binning.
Comparison of CALET and DAMPE

Is there a peak-like spectral structure at 1.4 TeV?

arXiv:1711.10995

Many papers speculating about the tentative peak which is not mentioned in the original paper

arXiv:1711.11579

arXiv:1712.00869

Fermi-LAT 2010

AMS-02 2014

HESS 2008+2010

arXiv:1711.11012

Energy [GeV]
Charge Identification of Nuclei with CHD and IMC

Single element selection for p, He and light nuclei is achieved by CHD+IMC charge analysis.

Charge separation in B to C : ~7 σ

CHD charge resolution (2 layers combined) vs. Z

Charge separation in B to C : ~5 σ

IMC Charge resolution using multiple dE/dx measurements from the scintillating fibers.

Non-linear response to Z² is corrected both in CHD and IMC using a halo model.

*) Plots are truncated to better show the elemental separation.
Preliminary Flux of Primary Components

Flux measurement:

\[\Phi(E) = \frac{N(E)}{S\Omega \epsilon(E) T \Delta E} \]

- N(E): Events in unfolded energy bin
- S\Omega: Geometrical acceptance
- T: Live time
- \epsilon(E): Efficiency
- \Delta E: Energy bin width

Observation period:
2015.10.13 – 2017.10.31 (750 days)
Selected events: ~13 million
Preliminary Energy spectra of Carbon and Oxygen (2 independent CALET analyses)

Broken Power Law fit
- $C = 13.23 \pm 0.37$
- $\gamma = -2.604 \pm 0.008$
- $\Delta \gamma = 0.200 \pm 0.057$
- $E_0 = 232 \pm 55$
- $s = 0.020$
- $\chi^2/ndf = 18.5/16$

Single Power-Law fit
- $C = 12.55 \pm 0.30$
- $\gamma = -2.588 \pm 0.006$
- $\chi^2/ndf = 38/19$

Broken Power Law fit
- $C = 12.82 \pm 0.35$
- $\gamma = -2.605 \pm 0.007$
- $\Delta \gamma = 0.34 \pm 0.11$
- $E_0 = 387 \pm 185$
- $s = 0.020$
- $\chi^2/ndf = 9.85/16$

Single Power-Law fit
- $C = 12.38 \pm 0.06$
- $\gamma = -2.596 \pm 0.001$
- $\chi^2/ndf = 27.5/19$

[Y.Akaike, E1.5-0028-18]

[P.Maestro, E1.5-0024-18]
Preliminary Boron-to-Carbon Flux Ratio

Systematic uncertainties:
- window range for charge selection
- charge selection by CHD or IMC
- charge selection by CHD or CHD/IMC
- hadron interaction model: DPMJET3 or EPOS, QGSJET2
- initial assuming spectra for energy unfolding
- long-term stability
- Exp/MC of Beam test (E=150GeV/c)

$^{10}\text{B} : ^{11}\text{B} = 3:7$
Preliminary Spectra of Nuclei with **Even** Atomic Number \((Z = 10 \div 16) \)

[Y.Akaike, E1.5-0028-18]
Preliminary Spectra of Nuclei with Even Atomic Number (Z = 18 ÷ 28)

[Y.Akaike, E1.5-0028-18]
CALET measures the relative abundances of ultra heavy nuclei through 40Zr

CALET has a special UH CR trigger utilizing the CHD and the top 4 layers of the IMC that:
- has an expanded geometry factor of \(\sim 4000 \text{ cm}^2\text{sr} \)
- has a very high duty cycle due to low event rate

Data analysis
- Event Selection: Vertical cutoff rigidity > 4GV & Zenith Angle < 60 degrees
- Contamination from neighboring charge are determined by multiple-Gaussian fit
CALET γ–ray Sky (>1GeV)

Instrument characterized using EPICS simulations

- Effective area $\sim 400\ \text{cm}^2$ above 2 GeV
- Angular resolution $< 2^\circ$ above 1 GeV ($< 0.2^\circ$ above 10 GeV)
- Energy resolution $\sim 12\%$ at 1 GeV ($\sim 5\%$ at 10 GeV)

Simulated IRFs consistent with 2 years of flight data

Consistency in signal-dominated regions with Fermi-LAT

Residual background in low-signal regions

Flux validation with pulsars (under investigation)

See also: E1.17-0009-18 (Mori & Asaoka)
Hard X-ray Monitor (HXM)

<table>
<thead>
<tr>
<th></th>
<th>HXM (x2)</th>
<th>SGM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detector (Crystal)</td>
<td>LaBr₃(Ce)</td>
<td>BGO</td>
</tr>
<tr>
<td>Number of detector</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Diameter [mm]</td>
<td>61</td>
<td>102</td>
</tr>
<tr>
<td>Thickness [mm]</td>
<td>12.7</td>
<td>76</td>
</tr>
<tr>
<td>Energy range [keV]</td>
<td>7-1000</td>
<td>100-20000</td>
</tr>
<tr>
<td>Energy resolution@662 keV</td>
<td>~3%</td>
<td>~15%</td>
</tr>
<tr>
<td>Field of view</td>
<td>~3 sr</td>
<td>~2π sr</td>
</tr>
</tbody>
</table>

- **Effective area [cm²]**
 - HXM x 2
 - SGM

CALET Gamma-ray Burst Monitor (CGBM)

P. S. Marrocchesi
Examples of CGBM light curves

- As of Sept 2017, 74 GRBs confirmed by other missions
- 63 Long (85%), 11 Short (15%) - Average rate ~ 37 GRBs/year

[S.Ricciarini, E1.17-00xx-18]
90% CL Upper limits for GW counterpart search

No event survived. Backgrounds are negligible.

- For GW151226 CALET-CAL observation constrains 15% of LIGO localization map by 90% upper limit flux of 9.3×10^{-8} erg cm$^{-2}$ sec$^{-1}$ (1-10 GeV)
- For GW170104, GW170608, GW170814 no constrain on any portion of LIGO probability

[M.Mori, E1.17-0022-18]

As of Feb. 28, 2018, total observation time is 870 days with live time fraction to total time close to 85 %. Nearly 570 million events collected with high energy (>10 GeV) trigger.

Accurate calibrations have been performed with non-interacting p & He events + linearity in the energy measurements established up to 10^6 MIP.

Preliminary analysis of nuclei, electrons (+ positrons) and gamma-rays have successfully been carried out and spectra obtained in the energy range:

- proton: $50 \text{ GeV} \sim 100 \text{ TeV}$, helium: $10 \text{ GeV} - 20 \text{ TeV/n}$, C-Fe: $300 \text{ GeV} \sim 100 \text{ TeV}$,
- B/C ratio: $20 \text{ GeV/n} - 1 \text{ TeV/n}$, All electrons: $10 \text{ GeV} \sim 4.5 \text{ TeV}$.

Preliminary analysis of UH cosmic rays up to $Z=40$.

CALET’s CGBM detected 74 GRBs in the energy range $7 \text{ keV} - 20 \text{ MeV}$. Follow-up observations of the GW events were carried out.

The so far excellent performance of CALET and the outstanding quality of the data suggest that a 5-year observation period is likely to provide a wealth of new interesting results.