

Yoichi Asaoka

The CALorimetric Electron Telescope (CALET) on the International Space Station **Results from the First Two Years of Operation**

CALET Collaboration Team

 O. Adriani²⁵, Y. Akaike², K. Asano⁷, Y. Asaoka^{9,31}, M.G. Bagliesi²⁹, E. Berti²⁵, G. Bigongiari²⁹, W.R. Binns³², S. Bonechi²⁹, M. Bongi²⁵, P. Brogi²⁹, A. Bruno¹⁴, J.H. Buckley³², N. Cannady¹³,
 G. Castellini²⁵, C. Checchia²⁶, M.L. Cherry¹³, G. Collazuol²⁶, V. Di Felice²⁸, K. Ebisawa⁸, H. Fuke⁸, T.G. Guzik¹³, T. Hams³,
 N. Hasebe³¹, K. Hibino¹⁰, M. Ichimura⁴, K. Ioka³⁴, W. Ishizaki⁷, M.H. Israel³², K. Kasahara³¹, J. Kataoka³¹, R. Kataoka¹⁷,
 Y. Katayose³³, C. Kato²³, Y.Kawakubo¹, N. Kawanaka³⁰, K. Kohri¹², H.S. Krawczynski³², J.F. Krizmanic², T. Lomtadze²⁷,
 P. Maestro²⁹, P.S. Marrocchesi²⁹, A.M. Messineo²⁷, J.W. Mitchell¹⁵, S. Miyake⁵, A.A. Moiseev³, K. Mori^{9,31}, M. Mori²⁰,
 N. Mori²⁵, H.M. Motz³¹, K. Munakata²³, H. Murakami³¹, S. Nakahira⁹, J. Nishimura⁸, G.A De Nolfo¹⁵, S. Okuno¹⁰,
 J.F. Ormes²⁵, S. Ozawa³¹, L. Pacini²⁵, F. Palma²⁸, V. Pal'shin¹, P. Papini²⁵, A.V. Penacchioni²⁹, B.F. Rauch³²,
 S.B. Ricciarini²⁵, K. Sakai³, T. Sakamoto¹, M. Sasaki³, Y. Shimizu¹⁰, A. Shiomi¹⁸, R. Sparvoli²⁸, P. Spillantini²⁵, F. Stolzi²⁹,
 S. Sugita¹, J.E. Suh²⁹, A. Sulaj²⁹, I. Takahashi¹¹, M. Takayanagi⁸, M. Takita⁷, T. Tamura¹⁰, N. Tateyama¹⁰, T. Terasawa⁷,
 H. Tomida⁸, S. Torii³¹, Y. Tunesada¹⁹, Y. Uchihori¹⁶, S. Ueno⁸, E. Vannuccini²⁵, J.P. Wefel¹³, K. Yamaoka¹⁴,
 S. Yanagita⁶, A. Yoshida¹, and K. Yoshida²²

1) Aoyama Gakuin University, Japan

- 2) CRESST/NASA/GSFC and
 - Universities Space Research Association, USA
- 3) CRESST/NASA/GSFC and University of Maryland, USA
- 4) Hirosaki University, Japan
- 5) Ibaraki National College of Technology, Japan
- 6) Ibaraki University, Japan
- 7) ICRR, University of Tokyo, Japan
- 8) ISAS/JAXA Japan

9) JAXA, Japan

- 10) Kanagawa University, Japan
- 11) Kavli IPMU, University of Tokyo, Japan
- 12) KEK, Japan
- 13) Louisiana State University, USA
- 14) Nagoya University, Japan
- 15) NASA/GSFC, USA
- 16) National Inst. of Radiological Sciences, Japan
- 17) National Institute of Polar Research, Japan

- 18) Nihon University, Japan
- 19) Osaka City University, Japan
- 20) Ritsumeikan University, Japan
- 21) Saitama University, Japan
- 22) Shibaura Institute of Technology, Japan
- 23) Shinshu University, Japan
- 24) University of Denver, USA
- 25) University of Florence, IFAC (CNR) and INFN, Italy
- 26) University of Padova and INFN, Italy
- 27) University of Pisa and INFN, Italy
- 28) University of Rome Tor Vergata and INFN, Italy
- 29) University of Siena and INFN, Italy
- 30) University of Tokyo, Japan
- 31) Waseda University, Japan
- 32) Washington University-St. Louis, USA
- 33) Yokohama National University, Japan
- 34) Yukawa Institute for Theoretical Physics, Kyoto University, Japan

CALET Collaboration Team

O. Adriani²⁵, Y. Akaike², K. Asano⁷, Y. Asaoka^{9,31}, M.G. Bagliesi²⁹, E. Berti²⁵, G. Bigongiari²⁹, W.R. Binns³², S. Bonechi²⁹, M. Bongi²⁵, P. Brogi²⁹, A. Bruno¹⁴, J.H. Buckley³², N. Cannady¹³,
G. Castellini²⁵, C. Checchia²⁶, M.L. Cherry¹³, G. Collazuol²⁶, V. Di Felice²⁸, K. Ebisawa⁸, H. Fuke⁸, T.G. Guzik¹³, T. Hams³, N. Hasebe³¹, K. Hibino¹⁰, M. Ichimura⁴, K. Ioka³⁴, W. Ishizaki⁷, M.H. Israel³², K. Kasahara³¹, J. Kataoka³¹, R. Kataoka¹⁷, Y. Katayose³³, C. Kato²³, Y.Kawakubo¹, N. Kawanaka³⁰, K. Kohri¹², H.S. Krawczynski³², J.F. Krizmanic², T. Lomtadze²⁷, P. Maestro²⁹, P.S. Marrocchesi²⁹, A.M. Messineo²⁷, J.W. Mitchell¹⁵, S. Miyake⁵, A.A. Moiseev³, K. Mori^{9,31}, M. Mori²⁰, N. Mori²⁵, H.M. Motz³¹, K. Munakata²³, H. Murakami³¹, S. Nakahira⁹, J. Nishimura⁸, G.A De Nolfo¹⁵, S. Okuno¹⁰, J.F. Ormes²⁵, S. Ozawa³¹, L. Pacini²⁵, F. Palma²⁸, V. Pal'shin¹, P. Papini²⁵, A.V. Penacchioni²⁹, B.F. Rauch³², S.B. Ricciarini²⁵, K. Sakai³, T. Sakamoto¹, M. Sasaki³, Y. Shimizu¹⁰, A. Shiomi¹⁸, R. Sparvoli²⁸, P. Spillantini²⁵, F. Stolzi²⁹, S. Sugita¹, J.E. Suh²⁹, A. Sulaj²⁹, I. Takahashi¹¹, M. Takayanagi⁸, M. Takita⁷, T. Tamura¹⁰, N. Tateyama¹⁰, T. Terasawa⁷, H. Tomida⁸, S. Torii³¹, Y. Tunesada¹⁹, Y. Uchihori¹⁶, S. Ueno⁸, E. Vannuccini²⁵, J.P. Wefel¹³, K. Yamaoka¹⁴, S. Yanagita⁶, A. Yoshida¹, and K. Yoshida²²

Outline

- 1. Introduction
- 2. Calibration
- 3. Operations
- 4. Results
 - 1. Electrons -
 - 2. Hadrons
 - 3. Gamma-Rays
 - 4. Space Weather

5. Summary

Y.Asaoka, Y.Akaike, Y.Komiya, R.Miyata, S.Torii et al. (CALET Collaboration), Astropart. Phys. 91 (2017) 1. Y.Asaoka, S.Ozawa, S.Torii et al. (CALET Collaboration), Astropart. Phys. 100 (2018) 29.

> O.Adriani et al. (CALET Collaboration), Phys.Rev.Lett. 119 (2017) 181101.

> O.Adriani et al. (CALET Collaboration), Phys.Rev.Lett. 120 (2018) 261102.

CRD July 7, 14:15-14:30 by Y. Akaike @ Academic Council Conference Hall)

O.Adriani et al. (CALET Collaboration), ApJL 829 (2016) L20. R.Kataoka et al., JGR, 10.1002/2016GL068930 (2016).

ISS as Cosmic Ray Observatory

AMS Launch May 16, 2011

CALET Launch August 19, 2015

ISS-CREAM Launch August 14, 2017

6th E+CRS/35th RCRS

ISS as Cosmic Ray Observatory

AMS Launch May 16, 2011

Magnet Spectrometer

- Various PID
- Anti-particles
- $E \le TeV$

Calorimeter

- Carbon target
- Hadrons
- Including TeV region

ISS-CREAM Launch August 14, 2017

- Fully active
- Electrons
- Including TeV region

CALET Launch August 19, 2015

Overview of CALET Observations

- Direct cosmic ray observations in space at highest energy region
- Cosmic ray observation at world-record level using a large-scale detector at ISS for a longterm (5 years expected)
- Electron observation in 1 GeV 20 TeV is achieved with high energy resolution due to optimization for electron detection
- Search for Dark Matter and Nearby Sources
- Observation of cosmic-ray nuclei will be performed in energy region from 10 GeV to 1 PeV
- Unravelling the CR acceleration and propagation mechanism
- Detection of transient phenomena in space by stable observations
 - Gamma-ray burst, Solar flare, Radiation from GW source etc.

CALET Payload

Launched on Aug. 19th, 2015 by the Japanese H2-B rocket

Emplaced on JEM-EF port #9 on Aug. 25th, 2015 (JEM-EF: Japanese Experiment Module-Exposed Facility)

JEM/Port #9

- Mass: 612.8 kg
- JEM Standard Payload Size: 1850mm(L) × 800mm(W) × 1000mm(H)
- Power Consumption: 507 W (max)
- Telemetry:
 Modium 600 kbps (6.5)

Medium 600 kbps (6.5GB/day) / Low 50 kbps

CALET has a Field-Of-View of 45° from its position at Port No.9. (A small part of the FOV is covered by thin structural material.

CALET located at the Port No.9 at the Japanese Experiment Module

CALET

ISS simplified model

CALET Instrument

Plastic		Scintillator + PMT	Scintillating Fibe + 64anode PMT	r Scintillator(PWO) + APD/PD or PMT (X1)	CALORIMETER	
					CHD-FEC CHD-FEC	
			IMC	TASC Contraction of the second	TASC-FEO TASC TASC TASC TASC TASC TASC TASC TASC	
		(Ch	CHD arge Detector)	IMC (Imaging Calorimeter)	TASC (Total Absorption Calorimeter)	
	Measure	(Ch	CHD arge Detector) harge (Z=1-40)	IMC (Imaging Calorimeter) Tracking , Particle ID	TASC (Total Absorption Calorimeter) Energy, e/p Separation	
	Measure Geometry (Material)	(Ch Cl Pla 14 paddles x Paddle Siz	CHD arge Detector) harge (Z=1-40) estic Scintillator 2 layers (X,Y): 28 paddles ze: 32 x 10 x 450 mm ³	IMC (Imaging Calorimeter) Tracking , Particle ID 448 Scifi x 16 layers (X,Y) : 7168 Scifi 7 W layers (3X ₀): 0.2X ₀ x 5 + 1X ₀ x2 Scifi size : 1 x 1 x 448 mm ³	TASC (Total Absorption Calorimeter)Energy, e/p Separation16 PWO logs x 12 layers (x,y): 192 logs log size: 19 x 20 x 326 mm³ Total Thickness : 27 X ₀ , ~1.2 λ ₁	
	Measure Geometry (Material) Readout	(Ch Cl Pla 14 paddles x Paddle Siz	CHD arge Detector) harge (Z=1-40) stic Scintillator 2 layers (X,Y): 28 paddles e: 32 x 10 x 450 mm ³ PMT+CSA	IMC (Imaging Calorimeter) Tracking , Particle ID 448 Scifi x 16 layers (X,Y) : 7168 Scifi 7 W layers (3X ₀): 0.2X ₀ x 5 + 1X ₀ x2 Scifi size : 1 x 1 x 448 mm ³ 64-anode PMT+ ASIC	TASC (Total Absorption Calorimeter)Energy, e/p Separation16 PWO logs x 12 layers (x,y): 192 logs log size: 19 x 20 x 326 mm³ Total Thickness : 27 X ₀ , ~1.2 λ ₁ APD/PD+CSA PMT+CSA (for Trigger)@top layer	

TASC Energy Measurement in Dynamic Range of 1-10⁶ MIP

26th E+CRS/35th RCRS

TASC Energy Deposit Distribution of All Triggered-Events by Observation for 962 days

12

26th E+CRS/35th RCRS

Event Examples of High-Energy Showers

Electron, E=3.05 TeV

fully contained even at 3TeV

Fe(Z=26), ∆E=9.3 TeV

energy deposit in CHD consistent with Fe

clear difference from electron shower

Gamma-ray, E=44.3 GeV

no energy deposit before pair production

Observation with High Energy Trigger (>10GeV)

Y.Asaoka, S.Ozawa, S.Torii et al. (CALET Collaboration), Astropart. Phys. 100 (2018) 29.

Observation by High Energy Trigger for 962 days : Oct.13, 2015 – May 31, 2018
 ■ The exposure, SΩT, has reached to ~84.0 m² sr day for electron observations by continuous and stable operations.

Total number of triggered events is ~630 million with a live time fraction of 84.0 %.

Accumulated observation time (live, dead)

All-Electron (e^++e^-)

O.Adriani et al. (CALET collaboration), Phys. Rev. Lett. 119 (2017) 181101 O.Adriani et al. (CALET collaboration), Phys. Rev. Lett. 120 (2018) 261102

CALET is an instrument optimized for all-electron spectrum measurements.

⇒ CALET is best suited for observation of possible fine structures in the all-electron spectrum up to the trans-TeV region.

Event Selection

Analyzed Flight Data:

- 627 days (October 13, 2015 to June 30, 2017)
- 55% of full CALET acceptance (Acceptance A+B; 570cm²sr)
- 1. Offline Trigger
- 2. Acceptance Cut
- 3. Single Charge Selection
- 4. Track Quality Cut
- 5. Shower Development Consistency
- 6. Electron Identification
 - 1. Simple two parameter cut
 - 2. Multivariate Analysis using Boosted Decision Trees (BDT)

(A+B)

Event Selection

Analyzed Flight Data:

- 627 days (October 13, 2015 to June 30, 2017)
- 55% of full CALET acceptance (Acceptance A+B; 570cm²sr)
- 1. Offline Trigger
- 2. Acceptance Cut
- 3. Single Charge Selection
- 4. Track Quality Cut

Pre-selection:

- Select events with successful reconstructions
- Rejecting heavier particles
- Equivalent sample between flight and MC data
- 5. Shower Development Consistency
- 6. Electron Identification
 - 1. Simple two parameter cut
 - 2. Multivariate Analysis using Boosted Decision Trees (BDT)

Electron Identification

Simple Two Parameter Cut

 F_E : Energy fraction of the bottom layer sum to the whole energy deposit sum in TASC R_E : Lateral spread of energy deposit in TASC-X1 Separation Parameter K is defined as follows:

 $K = \log_{10}(F_E) + 0.5 R_E (/cm)$

Boosted Decision Trees

In addition to the two parameters making up K, TASC and IMC shower profile fits are used as discriminating variables.

Electron Efficiency and Proton Rejection

- Constant and high efficiency is the key point in our analysis.
- Simple two parameter (BDT) cut is used in the energy region E<475GeV (E>475GeV) while the small difference in resultant spectrum between two methods are taken into account in the systematic uncertainty.
- Contamination is ~5% up to 1TeV, and 10~20% in the 1—4.8 TeV region.
 26th E+CRS/35th RCRS

All-Electron Spectrum Measured with CALET from 10 GeV to 3 TeV

CALET: PRL 119 (2017) 181101, 3 November 2017

All-Electron Spectrum Comparison w/ DAMPE

and other space based experiments

22

All-Electron Spectrum Comparison w/ DAMPE

All-Electron Spectrum Comparison w/ DAMPE

and other space based experiments

Extending the Analysis to Full Acceptance

Analyzed Flight Data:

- 780 days (October 13, 2015 to November 30, 2017)
- Full CALET acceptance at the high energy region (Acceptance A+B+C+D; 1040cm²sr). In the low energy region fully contained events are used (A+B; 550cm²sr)

Systematic Uncertainties

(other than energy scale uncertainty)

Stability of resultant flux are analyzed by scanning parameter space

Normalization:

- Live time
- Radiation environment
- Long-term stability
- Quality cuts
- Energy dependent:
 - 2 independent tracking
 - charge ID
 - electron ID (K-Cut vs BDT)
 - BDT stability (vs efficiency & training)
 - MC model (EPICS vs Geant4)

Flux Ratio vs Efficiency for BDT @ 1TeV

Extended Measurement by CALET

Approximately doubled statistics above 500GeV by using full acceptance of CALET

27

Extended Measurement by CALET

Approximately doubled statistics above 500GeV by using full acceptance of CALET

26th E+CRS/35th RCRS

Comparison with DAMPE's result

29

Comparison with DAMPE's result

What happens if we shifted our energy binning...

26th E+CRS/35th RCRS

30

Extended Measurement by CALET

Approximately doubled statistics above 500GeV by using full acceptance of CALET

 The accuracy and energy reach of our spectrum will improve by better statistics and a further reduction of the systematic errors based on the analysis of additional flight data during the ongoing five-year (or more) observation.

 10^{3}

Hadrons & Gamma-Rays

O.Adriani et al. (CALET Collaboration), ApJL 829 (2016) L20.

Preliminary Flux of Primary Components

Flux measurement:

 $\varepsilon(E)$: Efficiency

 ΔE : Energy bin width

Observation period: 2015.10.13 – 2017.10.31 (750 days) Selected events: ~13 million

CRD July 7, 14:15-14:30 by Y. Akaike @ Academic Council Conference Hall)

CALET γ -ray Sky in LE (>1GeV) Trigger

in LE gamma-ray trigger mode.

Galactic Longitude [deg] Geminga:432 Vela:138 Crab:150 All: 45740

= |declination| > 60 deg is hardly seen

Galactic diffuse gamma-rays

CALET UPPER LIMITS ON X-RAY AND GAMMA-RAY COUNTERPARTS OF GW 151226

Astrophysical Journal Letters 829:L20(5pp), 2016 September 20

10

The CGBM covered 32.5% and 49.1% of the GW 151226 sky localization probability in the 7 keV - 1 MeV and 40 keV - 20 MeV bands respectively. We place a 90% upper limit of 2×10^{-7} erg cm⁻² s⁻¹ in the 1 - 100 GeV band where CAL reaches 15% of the integrated LIGO probability (~1.1 sr). The CGBM 7 σ upper limits are 1.0×10^{-6} erg cm⁻² s⁻¹ (7-500 keV) and 1.8 $\times 10^{-6}$ erg cm⁻² s⁻¹ (50-1000 keV) for one second exposure. Those upper limits correspond to the luminosity of 3-5 $\times 10^{49}$ erg s⁻¹ which is significantly lower than typical short GRBs.

CGBM light curve at the moment of the GW151226 event

Figure 1. The CGBM light curves in 0.125 s time resolution for the high-gain data (left) and the low-gain data (right). The time is offset from the LIGO trigger time of GW 151226. The dashed-lines correspond to the 5 σ level from the mean count rate using the data of ± 10 s.

Upper limit for gamma-ray burst monitors and Calorimeter

HXM: 7-500 keV

SGM: 50-1000 keV

Figure 2. The sky maps of the 7 σ upper limit for HXM (left) and SGM (right). The assumed spectrum for estimating the upper limit is a typical BATSE S-GRBs (see text for details). The energy bands are 7-500 keV for HXM and 50-1000 keV for SGM. The GW 151226 probability map is shown in green contours. The shadow of ISS is shown in black hatches.

Figure 3. The sky map of the 90% upper limit for CAL in the 1-100 GeV band. A power-law model with a photon index of -2 is used to calculate the upper limit. The GW 151226 probability map is shown in green contours.

Summary and Future Prospects

- □ CALET was successfully launched on Aug. 19, 2015, and the detector is being very stable for observation since Oct. 13, 2015.
- As of May 31, 2018, total observation time is 962 days with live time fraction to total time close to 84%. Nearly 630 million events are collected with high energy (>10 GeV) trigger.
- Careful calibrations have been adopted by using "MIP" signals of the noninteracting p & He events, and the linearity in the energy measurements up to 10⁶ MIPs is established by using observed events.
- All electron spectrum has been extended in statistics and in the energy range from 11 GeV to 4.8TeV. This result is published in PRL again on June 2018.
- Preliminary analysis of nuclei and gamma-rays have successfully been carried out to obtain the energy spectra in the energy range: Protons in 55 GeV~22 TeV, Ne-Fe in 500 GeV~70 TeV.
- □ CALET's CGBM detected nearly 60 GRBs (~20 % short GRB among them) per year in the energy range of 7keV-20 MeV, as expected (not included in this talk). Follow-up observation of the GW events is carried out and published in ApJL.
- □ The so far excellent performance of CALET and the outstanding quality of the data suggest that a 5-year observation period is likely to provide a wealth of new interesting results.