

Measurements of Heavy Nuclei with the CALET Experiment

Yosui Akaike for the CALET Collaboration University of Maryland, Baltimore County and NASA Goddard Space Flight Center

CALET: CALorimetric Electron Telescope

Launch:August 19, 2015Observations:October 13, 2015

CALET Collaboration

O. Adriani²⁶, Y. Akaike², K. Asano⁷, Y. Asaoka^{9,32}, M.G. Bagliesi³⁰, G. Bigongiari³⁰, W.R. Binns³³, S. Bonechi³⁰, M. Bongi²⁶, P. Brogi³⁰, J.H. Buckley³³, N. Cannady¹³, G. Castellini²⁶, C. Checchia²⁷, M.L. Cherry¹³, G. Collazuol²⁷, V. Di Felice²⁹, K. Ebisawa⁸, H. Fuke⁸, T.G. Guzik¹³, T. Hams³, M. Hareyama²⁴, N. Hasebe³², K. Hibino¹⁰, M. Ichimura⁴, K. Ioka³⁵, W.Ishizaki⁷, M.H. Israel³³, A. Javaid¹³, K. Kasahara³², J. Kataoka³², R. Kataoka¹⁷, Y. Katayose³⁴, C. Kato²³, Y.Kawakubo¹, N. Kawanaka³¹, H. Kitamura¹⁶, K. Kohri¹², H.S.Krawczynski³³, J.F. Krizmanic², S. Kuramata⁴, T. Lomtadze²⁸, P. Maestro³⁰, P.S. Marrocchesi³⁰, A.M. Messineo²⁸, J.W. Mitchell¹⁵, S. Miyake⁵, K. Mizutani²¹, A.A. Moiseev³, K.Mori^{9,32}, M. Mori²⁰, N. Mori²⁶, H.M. Motz³², K. Munakata²³, H. Murakami³², G.A. de Nalfo¹⁵, S. Nakahira⁹, J. Nishimura⁸, S. Okuno¹⁰, J.F. Ormes²⁵, S. Ozawa³², L. Pacini²⁶, F. Palma²⁹, P. Papini²⁶, A.V. Penacchioni³⁰, B.F. Rauch³³, S.B. Ricciarini²⁶, K. Sakai³, T. Sakamoto¹, M. Sasaki³, Y. Shimizu¹⁰, A. Shiomi¹⁸, R. Sparvoli²⁹, P. Spillantini²⁶, F. Stolzi³⁰, I. Takahashi¹¹, M. Takayanagi⁸, M. Takita⁷, T. Tamura¹⁰, N. Tateyama¹⁰, T. Terasawa⁷, H. Tomida⁸, S. Torii^{9,32}, Y. Tunesada¹⁹, Y. Uchihori¹⁶, S. Ueno⁸, E. Vannuccini²⁶, J.P. Wefel¹³, K. Yamaoka¹⁴, S. Yanagita⁶, A. Yoshida¹, and K. Yoshida²²

1) Aoyama Gakuin University, Japan

2) CRESST/NASA/GSFC and Universities Space Research Association, USA

3) CRESST/NASA/GSFC and University of Maryland, USA

4) Hirosaki University, Japan

5) Ibaraki National College of Technology, Japan

6) Ibaraki University, Japan

7) ICRR, University of Tokyo, Japan

8) ISAS/JAXA Japan

9) JAXA, Japan

10) Kanagawa University, Japan

11) Kavli IPMU, University of Tokyo, Japan

12) KEK, Japan

13) Louisiana State University, USA

- 14) Nagoya University, Japan
- 15) NASA/GSFC, USA
- 16) National Inst. of Radiological Sciences, Japan
- 17) National Institute of Polar Research, Japan

18) Nihon University, Japan

- 19) Osaka City University, Japan
- 20) Ritsumeikan University, Japan
- 21) Saitama University, Japan
- 22) Shibaura Institute of Technology, Japan
- 23) Shinshu University, Japan
- 24) St. Marianna University School of Medicine, Japan
- 25) University of Denver, USA
- 26) University of Florence, IFAC (CNR) and INFN, Italy
- 27) University of Padova and INFN, Italy
- 28) University of Pisa and INFN, Italy
- 29) University of Rome Tor Vergata and INFN, Italy
- 30) University of Siena and INFN, Italy
- 31) University of Tokyo, Japan
- 32) Waseda University, Japan
- 33) Washington University-St. Louis, USA
- 34) Yokohama National University, Japan
- 35) Yukawa Institute for Theoretical Physics, Kyoto University, Japan

CALET-CAL Detector

A 30 radiation length deep calorimeter designed to detect electrons and gamma-rays to 20 TeV and cosmic rays up to 1 PeV

Analysis of Heavy Nuclei and Ultra Heavy Nuclei

- Analysis of heavy nuclei (Z>8)
 - On-board trigger
 - Event reconstruction
 - Track reconstruction
 - Charge identification
 - Energy measurement
 - Energy unfolding
 - Spectrum of primary components

 Analysis of ultra heavy nuclei (Z≤40)

An example of ultra heavy nuclei

- On-board trigger
- Event reconstruction
 - Track reconstruction
 - Charge identification
- Relative abundance to Fe

On-board trigger for heavy nuclei

On-board High Energy shower trigger (HE Trigger):

- The energy thresholds are set to detect shower events with energies over 10GeV

While penetrating light nuclei like protons and helium are not triggered, heavy ions with Z > 8 that interact in deep layers are detected thanks to its large dE/dx \Rightarrow Trigger efficiency for heavy nuclei with Z > 8 is therefore almost 100%.

shower image in X-Z view

Event reconstruction

- 1 Tracking IMC
 - Track reconstruction (CHD-X) 330µm, (CHD-Y) 300µm
- 2 Charge measurement CHD
 dF/dx measurement
 - consistency in CHDs and IMCs
- 3 Energy measurement TASC
 - Sum of deposit energy in TASC

- Energy unfolding
- Efficiencies, contaminants

shower image in X-Z view

Event reconstruction

- 1 Tracking IMC
 - Track reconstruction (CHD-X) 330µm, (CHD-Y) 300µm
- ② Charge measurement CHD- dE/dx measurement
 - consistency in CHDs and IMCs
- 3 Energy measurement TASC
 - Sum of deposit energy in TASC

- Energy unfolding
- Efficiencies, contaminants

shower image in X-Z view

Event reconstruction

- 1 Tracking IMC
 - Track reconstruction (CHD-X) 330µm, (CHD-Y) 300µm
- 2 Charge measurement CHD
 dF/dx measurement
 - consistency in CHDs and IMCs
- ③ Energy measurement TASC- Sum of deposit energy in TASC

- Energy unfolding
- Efficiencies, contaminants

shower image in X-Z view

Event reconstruction

- 1 Tracking IMC
 - Track reconstruction (CHD-X) 330µm, (CHD-Y) 300µm
- 2 Charge measurement CHD
 dE/dx measurement
 - consistency in CHDs and IMCs
- ③ Energy measurement TASC
 - Sum of deposit energy in TASC

- Energy unfolding
- Efficiencies, contaminants

Track reconstruction

- Reconstruction of the shower axis is based on IMC signals
- Heavy nuclei can make many shower particles in IMC, which could be a large background for track reconstruction. But the signal of primary particle is commonly larger than the signals of the shower particles
 - Simple tracking methods: Least chi-square fitting was applied for the maximum clusters in upper four IMC layers.

Charge identification

- Charge determinations are based on the signals from the CHD paddles
- To maintain good charge resolution and remove interact events at CHD;
 - require the charge consistency in CHD and IMC
 - Efficiency of these consistency cuts is 65~70% for heavy nuclei (Z>8) with little energy dependence

- The shower energy is determined from the sum of the TASC signals
- To derive the primary energy spectrum, Bayesian unfolding procedure were applied
- Response functions were made from MC simulation;
 - EPICS v9.21, Cosmos8.01 with DPMJET-III
 - Assuming MC spectra: $dN/dE = A E^{-\gamma}$ γ : initial power low index (=2.60)
 - A: norm. factor (determined by charge distributions)
- Charge selection efficiencies and contaminants from the neighboring charged nuclei were also taken into account in the unfolding procedures

Energy spectrum of heavy nuclei

$$\Phi(E) = \frac{N(E)}{S\Omega\varepsilon(E)T\Delta E}$$

- N(E) Events in unfolded energy bin
- SQ Geometrical acceptance (416 cm^2sr)
- *T.* Live time (39 million seconds) (Oct.13 2015 Mar.31 2017)
- $\varepsilon(E)$ Efficiency of trigger and track reconstruction (>96%)
- ΔE Bin width

Energy spectrum of heavy nuclei

$$\Phi(E) = \frac{N(E)}{S\Omega\varepsilon(E)T\Delta E}$$

- N(E) Events in unfolded energy bin
- SQ Geometrical acceptance (416 cm^2sr)
- *T.* Live time (39 million seconds) (Oct.13 2015 Mar.31 2017)
- $\varepsilon(E)$ Efficiency of trigger and track reconstruction (>96%)
- ΔE Bin width

Observations of ultra heavy nuclei

- CALET measures the relative abundances of ultra heavy nuclei through 40Zr
- Onboard trigger for ultra heavy nuclei:
 - -signals of only CHD, IMC1+2 and IMC3+4 are required
 - ⇒ an expanded geometrical acceptance (4000 cm²sr)
- Energy threshold depends on the geomagnetic cutoff rigidity

Onboard trigger for UH events

Geomagnetic Latitude

90

80

000505050500</t

10

Relative abundance to Fe

- Methods of track reconstruction and charge determination are same as those for heavy nuclei analysis
- Event selection:
 - Vertical geomagnetic cutoff rigidity > 4GV
 - Zenith angle < 60 degree

Relative abundance to Fe

- Methods of track reconstruction and charge determination are same as those for heavy nuclei analysis
- Event selection:
 - Vertical geomagnetic cutoff rigidity > 4GV
 - Zenith angle < 60 degree
- Contaminants from neighbor charge were determined from multiple-Gaussian function

Relative abundance to Fe

- Methods of track reconstruction and charge determination are same as those for heavy nuclei analysis
- Event selection:
 - Vertical geomagnetic cutoff rigidity > 4GV
 - Zenith angle < 60 degree
- Contaminants from neighbor charge were determined from multiple-Gaussian function

Conclusions

Energy spectrum of heavy nuclei up to 100TeV/particle

- The ability of CALET to measure heavy cosmic-ray nuclei has been successfully demonstrated, and preliminary energy spectra have derived for the primary comic ray elements up to 100TeV using data from the first 18 months of operation.
- Further studies will provide the excellent energy spectra with high statistics in a wide energy range, and reveal details spectral features.

Relative abundances of ultra heavy nuclei ($_{26}$ Fe – $_{40}$ Zr)

- CALET has also the capability to measure the relative abundances of the ultra heavy nuclei, and preliminary results of relative abundance to Fe were consistent with SuperTIGER within statistical uncertainties.
- Further studies will reduce the low-energy spillover from lower charges and allow us to resolve the odd-Z abundances as well.

Weighting for MC

- Response functions were made from MC simulation;
 - EPICS v9.21, Cosmos8.01 with DPMJET-III
 - Assuming MC spectra: dN/dE = A E⁻
 - γ : initial power low index (=2.60)
 - A: norm. factor (determined by charge distributions)

Charge distribution with CHD