YOU ARE HERE !

35th ICRC 12-20 July 2017, Busan, South Korea

Observation of Protons and Light Nuclei with CALET Analysis and Preliminary Results

> Pier Simone Marrocchesi Univ. of Siena and INFN Pisa

for the CALET Collaboration

ISS: a cosmic-ray observatory in Low Earth Orbit

Experiment	e ⁺ e ⁻ (present data)	e ⁺ +e ⁻ (Energy range)	CR nuclei (Energy range)	charge	Gamma-ray	Туре	Launch
PAMELA	e⁺ < 300 GeV e' < 625 GeV	1-700 GeV (3 TeV with cal)	1 GeV-1.2 TeV (extendable -> 2TeV)	1-8	-	SAT	2006 Jun 15
FERMI	-	7 GeV – 2 TeV	50 GeV-1 TeV	1	20 MeV – 300 GeV GRB 8 KeV – 35 MeV	SAT	2008 Nov 11
AMS-02	e* < 500 GeV e ⁻ < 700 GeV	1 GV-1 TV (extendable)	1 GV-1.9 TV (extendable)	1-26 ++	1 GeV-1 TeV (calorimeter)	ISS	2011 May 16
NUCLEON	-	100 GeV-3 TeV	100 GeV-1 PeV	1-30	-	SAT	2014 Dec 26
CALET		1 GeV-20 TeV	10 GeV-1 PeV	1-40	10 GeV-10 TeV GRB 7-20 MeV	ISS	2015 Aug 19
DAMPE	-	10 GeV-10 TeV	50 GeV-500 TeV	1-20	5 GeV-10 TeV	SAT	2015 Dec 17
ISS-CREAM	-	100 GeV-10 TeV	1 TeV-1 PeV	1-28 ++	-	ISS	2017
CSES	-	3-200 MeV	30-300 MeV	1	-	SAT	2017
GAMMA-400	-	1 GeV-20 TeV	1 TeV-3 PeV	1-26	20 MeV-1 TeV	SAT	~2023-25
HERD	-	10(s) -104 GeV	up to PeV	TBD	10(s) 104 GeV	CSS	~2022-25
HELIX	-	-	< 10 GeV/n	light isotopes	-	LDB	proposal
HNX	-	-	~ GeV/n	6-96	-	SAT	proposal
GAPS	-	-	< 1GeV/n	Anti-p, D	-	LDB	

Pier S. Marrocchesi – ICRC 2017 – Busan – July 2017, 14

Geometric Factor:

1040 cm^2sr for electron, proton

4000 cm²sr for ultra-heavy nuclei

- ΔE/E :
 - ~2% (>10 GeV) for e, gamma
 - ~30-35 % for protons, nuclei
- e/p separation : ~10⁻⁵
- Charge resolution : 0.15 0.3 e
- Angular resolution :
 - 0.2° for gamma-rays > ~50 GeV

CALorimetric Electron Telescope

Pier S. Marrocchesi – ICRC 2017 – Busan – July 2017, 14

ECTRON

JAXA

CALET main science goals

Science Objectives	Observation Targets			
Nearby Cosmic-ray Sources	Electron spectrum in trans-TeV region			
Dark Matter	Signatures in electron/gamma energy spectra in the 10 GeV – 10 TeV region			
Origin and Acceleration of Cosmic Rays	p-Fe up to the multi-TeV region, Ultra Heavy Nuclei			
Cosmic–Ray Propagation in the Galaxy	B/C ratio up to a few TeV /n			
Solar Physics	Electron flux below 10 GeV			
Gamma-ray Transients	Gamma-rays and X-rays in 7 keV – 20 MeV			

Pier S. Marrocchesi – ICRC 2017 – Busan – July 2017, 14

♦ CALET tracking takes advantage of the IMAGING capabilities of IMC thanks to its granularity of 1 mm with Sci-fibers readout individually.

Example: A multi-prong event due to an interaction of the primary particle in the CHD is very well imaged by the IMC.

					Calet ev	ent viewer	(Level2)					\heartsuit \land \times
File												
Previous event	t Nextevent Filt	er Autoplay	Hits \	√isualization	Trigger conf.	Event info	Save event	Save image	Save dump	Save se	ttings	
Go to event:	10565 stos Event dump											
											CAL event ID: 60121 File entry: 622 UTC time: 2016-04-25 02:16:3 UTC time: 1461550590.665 	

Charge Measurement: Dynamic Range

PMT+ CSA

• 64 -anode PMT(HPK) + ASIC

 $1 \le Z \le 40$

Pier S. Marrocchesi – ICRC 2017 – Busan – July 2017, 14

Fit of non-linear response of CHD layers vs Z²

CHD charge resolution (2 layers combined) vs Z

Fit of non-linear response of IMC fibers vs Z²

IMC charge resolution vs Z

IMC single fibers have photoelectron yield/MIP about 1 order of magnitude lower than the CHD paddles, but due to **multiple dE/dx sampling** (up to 16 independent measurements) the charge resolution of IMC is adequate to identify light nuclei.

Example: B to C charge separation is ~ 7σ with CHD and ~ 5σ with IMC

Example of combined CHD + IMC charge identification of light elements from boron to neon

IMC charge "Z-plane"

CHD charg

Energy Measurement: Dynamic Range & Calibrations

Pier S. Marrocchesi – ICRC 2017 – Busan – July 2017, 14

Fiducial Acceptance-A

Example of combined CHD + IMC charge identification of proton and helium

Residual He background after rejection of Z > 1 nuclei

Energy unfolding

A standard procedure is to construct an *energy overlap matrix* A_{ii} from MC data:

• matrix element α_{ij} and normalization factor n_j are weighted with the MC event weight when the "MC truth" energy falling into bin i leads to a reconstructed energy in bin j

 $A_{ij} \equiv \frac{\alpha_{ij}}{n_i}$

• the normalized matrix is defined as:

We also define:

- ϵ_i = total *efficiency* in i-th bin
- $\beta_i = background$ contamination in j-th bin
- M_i = number of events (weighted) *measured* in j-th bin (sum up to M_{tot} in energy range)
- N_i = energy unfolded number of events (weighted) in i-th bin
- Then:

$$N_i = \frac{1}{\epsilon_i} \sum_{j=1}^n A_{ij} (M_j - \beta_j M_{\text{tot}})$$

Residual electron contamination in proton sample

Preliminary analysis:

- Loose electron rejection cut: ratio of bottom TASC layer energy deposit / E_{TASC}
- Efficiency of the cut decreases with energy but contamination < 2%
- Electron background contamination can be further reduced by applying full e/p discrimination criteria.

Preliminary proton flux E^{2.7} from 50 GeV to 22 TeV

- 15 months of observation from December 1st, 2015 to February 28th, 2017
- subset of total acceptance: acceptance A (fiducial) with S Ω = 416 cm² sr
- Assessment of the systematic errors: IN PROGRESS

Preliminary dN/dE for light elements: proton to oxygen

CALET is exploring the Multi-TeV region

- elemental spectra & relative abundances,
- flux ratios (secondary-to-primary, primary-to-primary, secondary-to-secondary)

CALET Energy reach in 5 years:

- Proton spectrum to $\approx 900 \text{ TeV}$ ٠
- He spectrum to $\approx 400 \text{ TeV/n}$ ٠
- Spectra of C,O,Ne,Mg,Si to $\approx 20 \text{ TeV/n}$ ٠
- B/C ratio to $\approx 4 6 \text{ TeV/n}$ ٠
- Fe spectrum to $\approx 10 \text{ TeV/n}$ ٠

	λ_{INT}	X ₀ (normal incidence)
CREAM	0.5 + 0.7	20
CALET	1.3	30
AMS-02	0.5	17
DAMPE	1.6	31

CALET (expected 5 yrs

1

10

 10^{2}

Energy (GeV/n)

CAPRICE9

BESS-TEV

ATIC-2 x JACEE RUNJOB

CREAM-I

 Δ AMS-01

CALET expected in 5 yrs (red points)

Proton and He

106

 10^{3}

Conclusions

- $\diamond\,$ CALET has been delivering science data from the ISS during the last 20 months
- ♦ Total observation time 627 days with live time fraction to total time close to 84%
- ♦ Instrument performance and stability are excellent
- \diamond Single elements have been identified thanks to redundant charge measurements
- \diamond A preliminary analysis of proton and light nuclei has been presented
- The so far excellent performance of CALET and the outstanding quality of the data suggest that a 5-year observation period is likely to provide a wealth of new interesting results