Investigating Leptonic 3-Particle Dark Matter Decay as the Source of the Positron Excess with CALET

JPS Autumn Meeting Miyazaki 2016/9/21

21pSP-9

Holger Motz, Yoichi Asaoka^A, Shoji Torii^A, Saptashwa Bhattacharyya^B

ICSEP Waseda University, RISE Waseda University^A, ASE Waseda University^B

Origin of the Positron Excess

- Power law with cut-off extra source emitting an equal amount of electrons and positrons proposed by AMS-02 to explain positron excess
- One or more nearby pulsars / pulsar
 wind nebulae (PWN) could be this extra
 source → Pulsar Case

 Or by Dark Matter annihilation or decay → Dark Matter Case: Can CALET distinguish the spectrum from Dark Matter annihilation or decay from that of a pulsar?

Parametrization of Local Spectrum

Leptonic 3-particle Decay

 Possible decay Mode of Fermionic Dark Matter favoured as explanation of the positron excess

- Spectrum softer than equivalent 2-particle decay because the neutrino carries away part of the energy
 - \rightarrow spectral shape suited to explain the positron excess without including hadronic channels
 - → <u>no anti-proton constraints</u>

Theoretical Background

- Gravity Mediated Wino Dark Matter
 - M. Ibe et al. (JHEP 1307 (2013) 063)

 $50\% \widetilde{W}^{0} \rightarrow \mu^{\mp} + \nu_{\tau} + l_{R}^{\pm} + 50\% \widetilde{W}^{0} \rightarrow \tau^{\mp} + \nu_{\mu} + l_{R}^{\pm}$

- Fermionic Dark Matter in a 2-Higgs-Doublet Extension of the Standard Model
 - K. Kohri & N. Sahu
 (Phys. Rev. D 88, 103001)

$$N_L \rightarrow l^{\pm} + l^{\mp} + v$$

 Both predict a ~3 TeV Dark Matter candidate whose decay could explain the positron excess

Calculation of Decay Spectra with PYTHIA

- 3-particle decay spectra not published or available from public programs \rightarrow calculation with PYTHIA
- Initial momentum distribution of the three outgoing particles has been calculated analytically
- Approximation: mediator is extremely heavy → point-like interaction
- Only handedness of outgoing lepton decides initial momentum distribution:
- The further decay of outgoing leptons into electrons and positrons was calculated with PYTHIA 8.2

Fit to Current Data (AMS-02)

- Electron/positron decay spectra propagated with DRAGON
- Parameters optimized by minimization of χ² with regard to the predicted total flux (left) and positron fraction (right)
 → allowed model if χ² < 95 %CL
- 92% $\chi \rightarrow \tau^+ \tau^- \nu + 8\% \chi \rightarrow e^+ e^- \nu$ gives the best fit to AMS-02 data (branching fractions treated as free parameters in the fit)

Comparison of the Parametrization with Numerical Calculation

• In the energy range for the fitting (10 GeV - 1 TeV, deviation within 10 %)

- Assumed propagation parameters: $\delta = 0.4$, D = 3.7 10^{28} cm² s⁻¹
- Injection power law index for electron spectrum: 2.35

Prediction for CALET

- Expected flux derived from fit of candidate scenario to current experimental data
- Simulation of 500 statistical samples of expected CALET data for 5 year observation
- Fit of the Single Pulsar scenario to AMS positron fraction + simulated CALET data (done for each of the 500 samples)
- χ² distribution of all samples shows whether the scenario can likely be distinguished from a Single Pulsar (or similar smooth spectrum) using CALET data

CALET Simulated Data Analysis 92% $\chi \rightarrow \tau^{+} \tau^{-} \nu + 8\% \chi \rightarrow e^{+} e^{-} \nu$

• χ^2 distribution for all samples shows whether the scenario can likely be distinguished from the Single Pulsar case \rightarrow for most samples $\chi^2 > 95\%$ CL

Decaying Wino Dark Matter

50% $\chi \rightarrow \tau^+ \nu_\mu \tau_R^- + 50\% \chi \rightarrow \mu^+ \nu_\tau \tau_R^-$

Only the case of the right-handed third lepton being a τ gives a good fit to current data

Discerning Wino Dark Matter Decay from Single Pulsar $50\% \chi \rightarrow \tau^+ \nu_{\mu} \tau_{R}^- + 50\% \chi \rightarrow \mu^+ \nu_{\tau} \tau_{R}^-$

• For this decay mode of Wino Dark Matter, some (24%) samples are indistinguishable from a Single Pulsar.

Nearby SNR Included in the Model

Nearby SNR as an electron-only component

(Vela , 1.10^{48} erg – calculated with DRAGON)

• the best fit for the branching fractions becomes:

$$94\%~\chi~\rightarrow~\tau^{\scriptscriptstyle +}~\tau^{\scriptscriptstyle -}~\nu~~+~~6\%~\chi~\rightarrow~e^{\scriptscriptstyle +}~e^{\scriptscriptstyle -}~\nu$$

Discerning Matter Decay from Single Pulsar with nearby SNR

 $94\%~\chi~\rightarrow~\tau^+~\tau^-~\nu~+~6\%~\chi~\rightarrow~e^+~e^-~\nu$

• 79.8 % of simulated samples have $\chi^2 > 95\%$ CL

Result Overview

DM mass:	2 TeV	3 TeV	4 TeV
Free Branching Ratios Fit to Current data: X ² /ndf for AMS-02	62.1 / 86	72.2 / 86	87.3 / 86
CALET simulation: fraction of samples with $\chi^2 > 95$ %CL	99.2 %	94.4 %	96.2 %
Free Branching with Vela Fit to Current data: X ² /ndf for AMS-02	49.5 / 86	56.5 / 86 sho	67.8 / 86
CALET simulation: fraction of samples with $\chi^2 > 95$ %CL	82.2 %	79.8 %	67.2 %
Wino Decay Fit to Current data: X ² /ndf for AMS-02	112.6/88	89.5 / 88	121.3/88
CALET simulation: ffraction of samples with $\chi^2 > 95$ %CL	-	76.0 %	-
Wino Decay with Vela Fit to Current data: X ² /ndf for AMS-02	79.6 / 88	70.8 / 88	112.8/88
CALET simulation: fraction of samples with $\chi^2 > 95$ %CL	98.6 %	57.6 %	_

Result Overview

DM	mass:	2 TeV	3 TeV		4 TeV
Free Branch Fit to Curren X ² /ndf for A	hing Ratios t data: AMS-02	62.1 / 86	72.2 / 86		87.3 / 86
CALET simu fraction of sa $\chi^2 > 95$ %CL	lation: amples with	99.2 %	94.4 %		96.2 %
Free Branch Fit to Curren X ² /ndf for A	ning with Vela t data: AMS-02	49.5 / 86	56.5 / 86	sho	67.8 / 86
CALET simu fraction of sa $\chi^2 > 95$ %CL	lation: amples with	82.2 %	79.8 %	wn exar	67.2 %
Wino Decay Fit to Curre CALET can most likely			89.5 / 88	nples	Discrimination
X ² /ndf for	discern the	se models			from single
CALET sim ffraction of $\chi^2 > 95 \%$ C	from a single pulsar		76.0 %		pulsar difficul due to similar spectrum
Wino Decay Fit to Curren X ² /ndf for A	rrent data: 79.6 / 88 for AMS-02		70.8 / 88		
CALET simu fraction of sa $\chi^2 > 95$ %CL	lation: amples with	98.6 %	57.6 %		_

Gamma Constraints

- Gamma flux for galactic latitude (absolute value) larger than 20 degree
- Photons from FSR and those produced in decay of primary decay products (calculated with PYTHIA)

 \rightarrow For best fit model, expected gamma emission significantly exceeds gamma flux measured by Fermi in the same region

Low Gamma-Flux Scenario

• 1 TeV Dark Matter Mass

- Extra source provides positron excess only → electron + positron spectrum adjusted by strong contribution from nearby SNR (Vela , 2.10⁴⁸ erg)
- Decay does not include channel $\chi \rightarrow \tau^+ \tau^- \nu$
- Possibly further reduction of gamma flux by nonspherical halo profile

Prospects for the Low-Gamma Flux Scenario

 $75\%~\chi~\rightarrow~\mu^+~\mu^-~\nu~+~25\%~\chi~\rightarrow~e^+~e^-~\nu$

• 100 % of simulated samples have $\chi^2 > 95\%$ CL \rightarrow distinct drop in spectrum at half the DM mass

Conclusion

- Dark Matter decay into two leptons and a neutrino can in most cases be distinguished from a single PWN as the only source of the positron excess
- Most Dark Matter models fit current data better with the expected flux from a nearby SNR (Vela) included in the background flux.
- Explaining the positron excess with decay of Dark Matter with mass around 1 TeV might be allowed by constraints from Fermi extragalactic gamma flux measurement → decay into muon and electron favoured → clearly detectable by CALET

Backup Slides

Nearby SNR Detectability by Anisotropy

- Anisotropy calculation with DRAGON:
 - Fine grid around Sun
 - Directional flux calculated from differences in cosmic ray density *F* :

$$\Phi_{dir} = \Phi_{avg} \left(1 + \frac{3D}{c} \frac{(F_{x1} - F_{x2})/|x_1 - x_2|}{F_{Sun}} \right)$$

0.46033 0.4795

(source+bkg) exp. events/pixel (4 closest points linear interpolated)

Healpix Map of expected events with E > 200 GeV in CALET for 5-years of data-taking (Vela SNR + background)

→ Analysis of simulated data samples with likelihood-ratio test to determine CALET's ability to detect the anisotropy signature

Nearby SNR Detectability by Anisotropy

Test statistics distribution for the example case shown to the left \rightarrow probability to detect anisotropy with $2\sigma: 44\%$, and with $3\sigma: 12\%$

Parameters: $\delta = 0.4$ $D = 6.2 \ 10^{28} \ cm^2 \ s^{-1}$ $\gamma_i = 2.4$ $T = 0 \ yr$ (instantaneous)

Same parameters and spectrum for Vela as in the background case for DM

PRELIMINARY

 Depending on studied injection and propagation parameters, the probability of detection ranges from

32% to 82 % (2σ)

7% to 45 % (3σ)

Assuming there is no anisotropy from Vela for this case, a 95 % CL **upper limit of ~ 0.025** above 200 GeV is expected on the **anisotropy**

¢

$$\Phi_{max} = (1 + a) \left(\frac{\Phi_{max} + \Phi_{min}}{2} \right)$$

Spectra and Anisotropy for Different Injection/Propagation

$$\begin{split} \delta &= 0.4 \ , \ D_{_0} = 3.7 \ 10^{^{28}} \ cm^2 \, s^{^{-1}} \\ &\rightarrow \ D_{_{1TeV}} = 33.7 \ 10^{^{28}} \ cm^2 \, s^{^{-1}} \\ \gamma_{_{ini}} &= 2.4 \ , \ T = 0 \ kyr \end{split}$$

$$\begin{split} &\delta = 0.4 \ , \ D_{_0} = 6.2 \ 10^{^{28}} \ cm^2 \, s^{^{-1}} \\ &\rightarrow \ D_{_{1TeV}} = 36.2 \ 10^{^{28}} \ cm^2 \, s^{^{-1}} \\ &\gamma_{_{ini}} = 2.4 \ , \ T = 0 \ kyr \end{split}$$

 $= \frac{10^{2}}{10^{2}} - \frac{10^{2}}{10^{1}} - \frac{10^{2}}{10^{1}} - \frac{10^{2}}{10^{2}} - \frac{$

$$\begin{split} &\delta = 0.55 \text{ , } D_{_0} = 2.2 \ 10^{^{28}} \ cm^2 \ s^{^{-1}} \\ &\rightarrow D_{_{1\text{TeV}}} = 45.8 \ 10^{^{28}} \ cm^2 \ s^{^{-1}} \\ &\gamma_{_{\text{ini}}} = 2.0 \text{ , } T = 5 \ kyr \end{split}$$

Unbinned Analysis

- ΔE(E): Energy difference between energy ordered events (inversely proportional to density of events at energy E)
- -50/+50 GeV sliding average to smooth function

$$10^{10} \Delta E / E^3 = p_1 + p_2 \cdot E + p_3 / (e^{(p_4 - E)/p_5} + 1)$$

- Analysis by least square fit of parameters in function above
- Step at mass of LKP is identified
- => separation parameter DM/GSS: p₃/(p₁-6) [height of step / base flux]
- => reconstruction of mass possible $mLKP = p_4-p_5-20 \text{ GeV}$ [position of the step corrected for its softness]
 - Tested with 1000 simulated samples of 2-year CALET data for each case

JPS Autumn Meeting 2013

Generic Source Spectrum

mLKP=620 GeV mLKP=1200 GeV

Performance of Unbinned Analysis

- Clear Separation between local accelerators (Generic Source Spectrum GSS) and Kaluza Klein Dark Matter Annihilation possible with 2-yr CALET data
- Mass of Lightest Kaluza Klein Particle can be reconstructed with high resolution