Indirect Dark Matter Search with CALET

TeVPA 2016

CERN 2016/9/13

Holger Motz for the CALET collaboration

ICSEP Waseda University

CALorimetric Electron Telescope

Collaboration with groups from

Japan , USA , Italy

CALET was launched in August 2016 aboard HTV-5 and has now been installed on the ISS for 5-years of observation

GRB Monitor: •Hard X-Ray •Soft y-Ray

•2% energy resolution •1200 cm²×sr aperture •Proton rejection 10⁻⁵

Calorimeter: • Charge Detector • Imaging Calorimeter • Total Absorption Calorimeter • 30 radiation length thickness in total for fully contained events

CALorimetric Electron Telescope

Collaboration with groups from

Japan , USA , Italy

Japanese Experiment Module Exposed Facility Port 9 GRB Monitor

CALET was lau in August 2016 HTV-5 and has r installed on the 5-years of obse

Status and preliminary results from CALET as plenary talk by Shoji Torii on Thursday at 11:30 GRB Monitor: • Hard X-Ray • Soft y-Ray

•2% energy resolution •1200 cm²×sr aperture •Proton rejection 10⁻⁵

Calorimeter: • Charge Detector • Imaging Calorimeter • Total Absorption Calorimeter • 30 radiation length thickness in total for fully contained events

Origin of the Positron Excess

• Extra Cosmic-Ray Source:

Common power law with cut-off proposed by AMS-02 as empirical model fits data well

- Possibly caused by nearby pulsar(s) emitting an equal amount of electrons and positrons (Pulsar Case)
- Or by Dark Matter annihilation or decay (Dark Matter Case)

Investigated Questions:

Dark Matter Case:

- Could CALET identify signatures of Dark Matter decay that might explain the positron excess ?

Pulsar Case:

- What limits can be set from CALET data on Dark Matter Annihilation on top of this nearby pulsar source if taking into account the shape of the Dark Matter spectrum

Parametrization of Local Spectrum

Leptonic 3-particle Decay

 Possible decay Mode of Fermionic Dark Matter favoured as explanation of the positron excess

- Spectrum softer than equivalent 2particle decay because the neutrino caries away part of the energy
 - → spectral shape suited to explain the positron excess without including hadronic channels
 - → <u>no anti-proton constraints</u>

Theoretical Background

- Gravity Mediated Wino Dark Matter
 - M. Ibe et al. (JHEP 1307 (2013) 063)

 $50\%\widetilde{W}^{0} \rightarrow \mu + \nu_{\tau} + l^{\pm} + 50\%\widetilde{W}^{0} \rightarrow \tau + \nu_{\mu} + l^{\pm}$

- Fermionic Dark Matter in a 2-Higgs-Doublet Extension of the Standard Model
 - K. Kohri & N. Sahu
 (Phys. Rev. D 88, 103001)

$$N_L \rightarrow l^{\pm} + l^{\mp} + v$$

 Both predict a ~3 TeV Dark Matter candidate whose decay could explain the positron excess

Fit to Current Data (AMS-02)

- Electron/positron spectra from 3-particle decay in point-interaction approximation calculated with Pythia and propagated with DRAGON
- Parameters optimized by minimization of χ^2 with regard to the predicted total flux (left) and positron fraction (right) \rightarrow allowed model if $\chi^2 < 95$ %CL
- 92% $\chi \rightarrow \tau^+ \tau^- \nu + 8\% \chi \rightarrow e^+ e^- \nu$ gives the best fit to AMS-02 data (branching fractions treated as free parameters in the fit)

Prediction for CALET

- Expected flux derived from fit of candidate scenario to current experimental data
- Simulation of 500 statistical samples of expected CALET data for 5 year observation
- Fit of the Single Pulsar scenario to AMS positron fraction + simulated CALET data (done for each of the 500 samples)
- χ² distribution of all samples shows whether the scenario can likely be distinguished from a Single Pulsar (or similar smooth spectrum) using CALET data

CALET Simulated Data Analysis 92% $\chi \rightarrow \tau^{+} \tau^{-} \nu + 8\% \chi \rightarrow e^{+} e^{-} \nu$

• χ^2 distribution for all samples shows whether the scenario can likely be distinguished from the Single Pulsar case \rightarrow for most samples $\chi^2 > 95\%$ CL

Nearby SNR Included in the Model

- Nearby SNR as a fixed electron-only component
- The Vela SNR is expected to dominate over all other candidates: $E_{CR>1GeV} = 1.10^{48}$ erg – spectrum calculated with DRAGON
- The best fit for the branching fractions becomes: $94\% \chi \rightarrow \tau^+ \tau^- \nu + 6\% \chi \rightarrow e^+ e^- \nu$

Decaying Wino Dark Matter

50% $\chi \rightarrow \tau^+ \nu_\mu \tau_R^- + 50\% \chi \rightarrow \mu^+ \nu_\tau \tau_R^-$

Only the case of the right-handed third lepton being a τ gives a good fit to current data

Result Overview

DM mass:	2 TeV	3 TeV	4 TeV
Free Branching Ratios Fit to Current data: X ² /ndf for AMS-02	62.1 / 86	72.2 / 86	87.3 / 86
CALET simulation: fraction of samples with $\chi^2 > 95$ %CL	99.2 %	94.4 %	96.2 %
Free Branching with Vela Fit to Current data: X ² /ndf for AMS-02	49.5 / 86	56.5 / 86 sho	67.8 / 86
CALET simulation: fraction of samples with $\chi^2 > 95$ %CL	82.2 %	79.8 %	67.2 %
Wino Decay Fit to Current data: X ² /ndf for AMS-02	112.6/88	89.5 / 88	121.3/88
CALET simulation: ffraction of samples with $\chi^2 > 95$ %CL	-	76.0 %	-
Wino Decay with Vela Fit to Current data: X ² /ndf for AMS-02	79.6 / 88	70.8 / 88	112.8/88
CALET simulation: fraction of samples with $\chi^2 > 95$ %CL	98.6 %	57.6 %	_

Gamma Constraints

- Gamma flux for galactic latitude (absolute value) larger than 20 degree
- Photons from FSR and those produced in decay of primary decay products (calculated with PYTHIA)

 \rightarrow For best fit model, expected gamma emission significantly exceeds gamma flux measured by Fermi in the same region

Low Gamma-Flux Scenario

1 TeV Dark Matter Mass

- Extra source provides positron excess only → electron + positron spectrum adjusted by strong contribution from nearby SNR (Vela , 2.10⁴⁸ erg)
- Decay does not include channel $\chi \rightarrow \tau^{\scriptscriptstyle +} \, \tau^{\scriptscriptstyle -} \, \nu$
- Possibly further reduction of gamma flux by adopting a non-spherical halo profile

Prospects for the Low-Gamma Flux Scenario

 $75\%~\chi~\rightarrow~\mu^+~\mu^-~\nu~+~25\%~\chi~\rightarrow~e^+~e^-~\nu$

- 100 % of simulated samples have $\chi^2 > 95\%$ CL
 - → distinct drop in spectrum at half the Dark Matter mass

Origin of the Positron Excess

• Extra Cosmic-Ray Source:

Common power law with cut-off proposed by AMS-02 as empirical model fits data well

- Possibly caused by nearby pulsar(s) emitting an equal amount of electrons and positrons (Pulsar Case)
- Or by Dark Matter annihilation or decay (Dark Matter Case)

Investigated Questions:

Dark Matter Case:

 Could CALET identify signatures of Dark Matter decay that might explain the positron excess ?

Pulsar Case:

- What limits can be set from CALET data on Dark Matter Annihilation on top of this nearby pulsar source if taking into account the shape of the Dark Matter spectrum

Expected Limit Calculation

- Statistical samples of 5-year CALET data were simulated for the best fit of the pulsar case to AMs-02 data (with and without additional contribution from Vela SNR)
- Starting from the best pulsar fit, the Dark Matter term is added and the Boost Factor increased until χ^2 reaches the 95% CL exclusion limit \rightarrow Expected limit

Influence of a Nearby SNR on the Expected Limits ($\mu^++\mu^-$ - channel)

The influence of a nearby SNR as part of the background is small and comparable to other nuisance parameters such as the propagation parameters

Overview of Expected Limits

Annihilation to 100% e⁺ + e⁻

Nearby SNR

- A nearby SNR (Vela) may be an important part of the background for Dark Matter search
- Identification of a nearby SNR's signature is one of the main targets of the CALET project
- Presence of a distinct signature in the spectrum depends on injection and propagation conditions

Possible signature of Vela in the TeVregion electron+positron spectrum Kobayashi et al. ApJ 2004

 In addition to search for spectral features in the TeV-region, cosmic-ray **anisotropy** can be used to identify this nearby point source

Anisotropy from Vela SNR

$$\Delta = \frac{\Phi_{max} - \Phi_{min}}{\Phi_{max} + \Phi_{min}} = \frac{3D}{c} \frac{|\nabla F|}{F}$$
$$D(E) = D_0 \left(\frac{E}{4 \, GeV}\right)^{\delta}$$

- Anisotropy increasing with energy, reaches 10 % in TeV region
- Due to better statistics at lower energy, minimum energy of several 100 GeV expected to be optimum
- Refinement of analysis methods ongoing

Summary and Conclusion

- A Dark Matter explanation of the positron excess can most likely be distinguished by spectral shape from a single pulsar, especially for those models potentially fulfilling extragalactic gamma-ray flux constraints
- Limits on Dark Matter annihilation as a potential additional component to a pulsar explanation of the positron excess are expected to be improved significantly, especially for direct annihilation to e⁺+e⁻
- Detection of a nearby SNR's signature in the TeV region energy spectrum and/or by anisotropy possible
- CALET has been taking data since one year now, first preliminary results to be released soon!
 - → Plenary talk by Shoji Torii on Thursday 11:30

Backup Slides

Calculation of Decay Spectra with Pythia

- 3-particle decay spectra not published or available from public programs \rightarrow calculation with Pythia
- Initial momentum distribution of the three outgoing particles has been calculated analytically
- Approximation: mediator is extremely heavy → point-like interaction
- Only handedness of outgoing lepton initial momentum distribution:
- The further decay of outgoing leptons into electrons and positrons was calculated with Pythia 8.2

Comparison of the Parametrization with Numerical Calculation

• In the energy range for the fitting (10 GeV - 1 TeV, deviation within 10 %)

- Assumed propagation parameters: $\delta = 0.4$, D = 3.7 10^{28} cm² s⁻¹
- Injection power law index for electron spectrum: 2.35

Geminga Pulsar + Vela

